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ABSTP~CT: Following the early work of  Bagnold (1941) h has recently been suggested that the log-hyperbolic distribution offers a 
better description of  grain-size distribution than the log-normal distribution. This paper undertakes a comparison of  the suitability 
of  the log-hyperbolic and log-normal distributions in describing the textural characteristics of  desert-dune sediments. A statistical 
analysis of  the results shows that no apparent gain is obtained when using the parameters of  the log-hyperbolic distribution to 
describe such sediments. 

INTRODUCTION 

The ambiguities and difficulties involved in using the 
grain-size distribution characteristics of a sediment, in 
order to relate that sediment to a specific depositionai 
environment, are deeply imbedded in the sedimentolog- 
ical literature (e.g., Sedimentation Seminar 1981). The 
empirical nature of much of  this work, and the adoption, 
at times, of a battery of summary statistics, which bear 
a distant relationship to the sediment-transport processes 
involved, generates skepticism in the results obtained (see, 
for example, the discussion by Folk 1977 and Picard 1977 
of  the paper by Freeman and Visher 1975). Consequently, 
it is not surprising that, for some researchers, particle- 
size analysis is now seen as a largely futile exercise (Ehrlich 
1983). But while there are grounds for criticism, the em- 
pirical and inductive nature of comparative sediment 
grain-size work is understandable. The incomplete un- 
derstanding of  sediment transport mechanics, and the 
difficulties imposed by sediment availability and supply, 
have hindered attempts to develop a more deductive and 
physically based study of  grain-size distributions. Not- 
withstanding the criticism directed at the use of  grain- 
size distribution characteristics to describe and/or char- 
acterize specific depositional environments, the need will 
continue for such work to be used as one indicator of  
depositional history of  a sediment. This requires that a 
grain-size distribution is adequately described by a suit- 
able model distribution. Furthermore, it is to be expected 
that the model distribution stimulates the development 
of  a physical explanation for the sediment grain-size dis- 
tribution. The recent work of  Barndorff-Nielsen (1977), 
Bagnold and Barndorff-Nielsen (1980), Barndorff-Nielsen 
and others (1982), and Barndorff-Nielsen and others 
(1983) is welcomed on both counts. It is based on earlier 
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work by Bagnold (1941) and claims that the log-hyper- 
bolic distribution offers a better description of  sediment 
grain-size distributions than the customarily used, but 
apparently often poorly fitted, log-normal distribution. 
This claim suggests that the log-hyperbolic distribution 
will provide summary statistics which more adequately 
relate a sediment to a specific depositional environment. 

So far there have not been any real attempts at using 
the log-hyperbolic distribution in a routine sedimento- 
logical context. Our aim in this paper is to examine the 
applicability of the log-hyperbolic distribution to "type" 
the textural characteristics of longitudinal desert-dune 
sediments, and to evaluate the ability of  this distribution 
to distinguish between the three dune settings--dune sides, 
dune crests, and interdunal corridor. The results obtained 
from the log-hyperbolic distribution are compared with 
those obtained from the conventional log-normal distri- 
bution. Both distributions are fitted to the data by the 
method of maximum likeness proposed by Barndorff- 
Nielsen (1977). 

SEDIMENT SAMPLING AND PREPARATION 

The presently stable and vegetated longitudinal dunes 
of the Gascoyne River-Exmouth Gulf  area of  north- 
western Australia were sampled along traverses, with sed- 
iments obtained from the middle section of  the dune 
sides, the dune crest, and the interdtmal corridor. Five 
traverses in different parts of  the dune field were under- 
taken. The samples were obtained from approximately 
0.5 m below the surface, and a grab sample of about 200-- 
500 g was usually collected. 

When establishing the grain-size distribution of sedi- 
ments through sieving, the sample weight adopted must 
clearly be a function of the grain-size variation in the 
sample. Because in this form of  analysis, weight-frequen- 
cy is taken as a surrogate for particle-frequency, the sta- 
tistical problems associated with determining the neces- 
sary sample size (weight) are formidable. Consequently, 
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only a "rule of  thumb"  approach is generally taken to 
determine sample size (e.g., Blatt et al. 1972, p. 47; Folk 
1974, p. 33). In this study of the textural characteristics 
of  longitudinal dunes, Folk (1971) collected a one-inch- 
square cube of  material (~  15-20 g). He adopted this 
sample size because he considered that this (1) is not such 
an excessive weight as to overload the screens; and (2) 
this approximates the cross-sectional area of  an average 
thin section, facilitating comparison with the size param- 
eters o f  lithified eolian sandstone. Tsoar (1978), using 
micro-sieves, used sample amounts of  as little as 5 to 10 
g. More recently, Binda (1983) used sample weights of  
100 g and 60--70 g. 

During the preparation of the obtained samples for 
sieving, and also during preliminary sieving, it became 
obvious that the longitudinal dune sands contained small 
amounts of  material which were larger than - 0 . 5  4~- This 
sized material formed such a small percentage of  the total 
sample that the likelihood of  obtaining some indication 
of  this in a sample of 20 g (the original sample weight 
adopted) was thought to be remote. For this reason it was 
considered necessary to adopt a larger sample weight. Van 
Rooyen and Burger (1974) suggest a 100-g sand sample 
sieved at 0.5 ~ intervals for 30 minutes. This procedure 
was adopted for the present study with a lower screen 
size of  4.5 ¢, but reservations existed about whether a 
large sample weight would not lead to screen overloading; 
with a weight retained by individual screens exceeding 
30 g in some samples, this was seen as a potentially serious 
problem. To overcome this, after mechanical sieving, each 
screen was further hand-sieved and carefully "worked" 
with a fine brush to make sure that no grains smaller than 
the screen size were retained. This procedure was tedious 
and extremely time consuming, but it was felt that this 
was the only way such a large sample weight could be 
processed so that it was possible to be confident of  the 
validity of  the results. 

After sieving, a sample from each screen was inspected 
under a binocular microscope to make sure that aggre- 
gates did not occur in the sample. In a number  of samples, 
carbonate cementation of grains had occurred, and in 
these cases the sample was disaggregated by standard 
techniques (Folk 1974, p. 17), with the sample subse- 
quently washed in distilled water. After such treatment, 
the screen sample was again viewed under a binocular 
microscope to cheek for grain aggregation. 

THE NORMAL AND HYPERBOLIC DISTRIBUTIONS 

The well-known normal distribution has two param- 
eters and a probability density function which may be 
written 

p(x;v,a) = ~ exp - 

It is characterized by the fact that a plot of  log p against 
x gives a parabolic curve. The parameters t~ and a give 
location and scale, respectively. 

The hyperbolic distribution was introduced formally 

by Barndorff-Nielsen (1977) and has been further dis- 
cussed and summarized by Bagnold and Barndorff-Niel- 
sen (1980) and by Barndorff-Nielsen and others (1982). 
It has four parameters and the probability density func- 
tion 

p ( x ; u , 6 , ~ , 3 " )  = 
~(~ + 3')Kt(~X/~) 

, 0  

Here Ki is a modified Bessel function. The hyperbolic 
distribution is characterized by the fact that plotting log 
p against x gives a (possibly asymmetric) hyperbola. 

Like the parameters of  the normal distribution, u and 
give location and scale. All four hyperbolic parameters 

may be given geometric interpretations in terms of the 
hyperbolic graph. The parameters $ and 3' give the slopes 
of  the left and right-hand linear asymptotes of  log p, and 
# is the abscissa of  the intersection point of  the two as- 
ymptotes. The parameter 6 is related to the graph through 
the derived parameter 

which is the difference between the ordinate of  the inter- 
section point of  the two asymptotes and the ordinate of  
the hyperbolic curve at the mode point. 

The grain-size distributions, both the normal and the 
hyperbolic, are applied to the log-grain size. Hence we 
refer to the log-normal or log-hyperbolic distribution for 
grain size. In this study we apply these theoretical distri- 
butions to the mass-size sample distributions rather than 
to the frequency-size distribution. It is theoretically pos- 
sible for both mass-size and frequency-size sample dis- 
tributions to follow log-hyperbolic distributions (with 
different asymptotic slopes), but not for both to be log- 
normal. 

When comparing the normal and hyperbolic distri- 
butions, it will be important to note that the normal is a 
limiting case of  the hyperbolic. The curvature of the hy- 
perbolic curve at its mode point is given by 

r 2 = (¢3" )3 ,2  

By making 4~, 3", and ~ large in such a way that r 2 and 4~ - 
3' remain fixed, the resulting hyperbolic distribution can 
be made arbitrarily close to the normal distribution with 
mean tz + (¢# - 3")/(2r 2) and variance 1/r 2. Any normal 
distribution may be approximated in this way. 

FITTING DISTRIBUTIONS TO MASS-SIZE DATA 

The mass-size distnbution of a sand sample can be 
displayed as a double-logarithmic histogram plot as de- 
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scribed in Barndorff-Nielsen (1977). To fit a log-hyper- 
bolic distribution to the data we could simply plot a hy- 
perbolic curve through this histogram and estimate the 
parameters directly from the curve on the basis of their 
geometric interpretations. A similar process would be to 
obtain the graphic measures of a log-normal distribution 
as in Folk and Ward (1957). Alternatively, as is com- 
monly done, we could fit the log-normal distribution by 
equating the first and second moments of the fitted and 
sample distributions. Neither of  these methods is as sen- 
sitive as maximizing (or minimizing) an appropriate sta- 
tistical objective function. 

If  the data consisted of counts of independent obser- 
vations, then the principle of  maximum likelihood would 
lead us to maximize 

L = Z nilog Pi, 

where Pi is the theoretical probability mass and nt is the 
number of observations in the ith interval. When fitting 
to mass-size distributions of dune sediments, likelihood 
methods are not available to us, partly because our data 
consist of weights rather than counts, but more impor- 
tantly because the sizes of  the individual sand grains can- 
not be considered independent. Following Barndorff- 
Nielsen (1977), we maximize L even though it is not a 
likelihood, simply substituting relative weights ri for the 
counts hi. We justify the method instead in terms of  in- 
formation theory. Maximizing L, with weights substitut- 
ed for counts, is equivalent to minimizing 

I = ~ rtlog r--L. 
Pi 

Kullback (1959) calls I the mean information for dis- 
crimination in favor of the ri against the Pi. It may be 
interpreted as a measure of  dissimilarity or distance be- 
tween the theoretical and empirical probability masses. 
In this paper we actually use 

D = 2W ~ rilog r±, 
Pi 

where W is the total weight of  the sample, which as an 
objective function is also equivalent to L. We call the 
minimum of D the divergence of  the fitted distribution 
from the data. 

It should be added that fitting the hyperbolic distri- 
bution to data was found to be an extremely ill condi- 
tioned numerical problem, and considerable program- 
ming effort was expended to get reliable estimates for the 
samples. 

Computer Routines Used 

Programming was carried out in FORTRAN on a DEC 
KL 10 computer using library routines from a variety of 
SOurCeS.  

For the normal distribution the divergence was mini- 
mized by the EM algorithm for maximum likelihood es- 
timation with incomplete or grouped data described by 
Dempster, Laird, and Rubin (1980). The NAG (Numer- 
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FIG. 1.--Stem-leaf plots of the mean divergences. The unit and first 
decimal place are used as the "stem," the second decimal place as a 
"leaf.'" 

ical Algorithms Group 1983) routine S15ABF was used 
for the normal densities. 

For the hyperbolic distribution, minimization used a 
quasi-Newton algorithm described by Fletcher (1970) and 
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programmed as subroutine VA09A for the Harwell sub- 
routine library (Hopper 1973). Starting values were ob- 
tained by assuming the sample mass to be concentrated 
at the midpoints of  the sieve intervals. 

The theoretical probability masses Pi, and their partial 
derivatives, were computed using the NAG numerical 
integration program DO 1AHF. Functions of  the modified 
Bessell functions appearing in the hyperbolic density and 
its derivatives, were programamed from the polynomial 
approximations of  Abramowitz and Stegun (1970), and 
from the NAG routines S 18ACF and S18ADF. Percen- 
tiles of  the hyperbolic distribution were obtained by the 
Newton method for solving nonlinear equations, and those 
of the normal distribution from the IMSL (IMSL 1982) 
routine MDNRIS.  

COMPARING THE NORMAL AND HYPERBOLIC 
DISTRIBUTIONS 

As described above, the hyperbolic distribution has two 
more parameters than the normal, and includes the nor- 
mal as a limiting case. For this reason the fitted hyperbolic 
distribution should appear to match any given sample at 
least as well as the best normal. In fitting the extra pa- 
rameters, however, we incur costs which include in- 
creased statistical variability of  the estimates, increased 

correlation between those estimates, and a considerable 
increase in programming complexity. The hyperbolic dis- 
tribution, moreover, appears to be more erratic in the 
presence of  error or of  data which actually follows neither 
distribution. The upper and lower asymptotes and 7 in 
particular are very sensitive to small changes in the upper 
and lower tails o f  the sample (see the remarks made about 
distributional tails in the discussion). We must judge 
whether the extra parameters produce an improvement  
in fit which is worth the cost; that is, whether the hyper- 
bolic distribution is a model of  a departure from the 
normal which is not purely random. 

Since the sizes of  individual grains are not independent, 
and because the nature of  their dependence is not known, 
we cannot calculate the sampling variability of  the ob- 
served mass-size distribution. For this reason, neither we 
nor Barndorff-Nielsen and his coworkers offer formal sig- 
nificance tests of  goodness of  fit. (Barndorff-Nielsen et al. 
1982 have succeeded, though, in providing standard errors 
for the hyperbolic parameters through the artifact of  du- 
plicate samples.) Instead we must make judgements sub- 
jectively from visual displays of  each sample. 

Nevertheless we attempt to order the samples in terms 
of goodness of  fit on the basis o f  their mean divergences. 
The divergence D defined above is the statistic which 
would be chi-square distributed if  the data were inde- 
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pendent counts instead of relative weights. To correct for 
the number of  parameters estimated, we define the mean 
divergence M to be the divergence divided by the number  
of  degrees of  freedom. The number of  degrees of freedom 
is the number of  nonzero frequencies less the number of  
estimated parameters, two for the normal distribution, 
four for the hyperbolic. This definition may be motivated 
by the observation that a normal curve may be chosen 
to fit virtually perfectly any sample with only two nonzero 
frequencies, while a hyperbolic may be chosen to fit per- 
fectly any unimodal sample with only four nonzero fre- 
quencies. 

RESULTS 

A total of  83 samples was included in the study. Of  
these, 23 were dune crest samples, 30 were dune side, 
and 16 were interdunal corridor. The resulting mean di- 
vergences ranged from 0.07 to 2.80. 

Stem-leaf plots of  the mean divergences are given in 
Figure 1. These plots are horizontal histograms with the 
unit and first decimal place (rounded to an even integer) 
as "s tems" and the second decimal place as "leaves." 
Although the hyperbolic distribution produces more very 
small divergences (six below 0.10 instead of  o ne )and  

fewer very large (none above 1.80), on the whole the 
spread of  the mean divergences for the two distributions 
is similar. Both distributions fit the dune-crest and dune- 
side samples better than they do the dune corridor, and 
the hyperbolic fits the dune-crest samples best of  all. 

Figures 2 to 5 give plots for a selection of  the samples. 
For each sample displayed we give Q-Q plots as well as 
the double logarithmic histogram plots. The Q-Q plots 
compare the sample and fitted cumulative distributions 
by plotting the sieve sizes against the fitted percentiles 
for the proportion weight retained by the sieve. This is 
similar to plotting the cumulative sample distribution on 
normal or hyperbolic probability paper. Note that it is 
not possible to represent the pan weight or the weight 
passing through the finest sieve on the histogram, but 
both are evident on the Q-Q plot. 

Figure 2 displays plots of  four samples which both 
distributions fit well. Figure 3 plots four samples which 
are fitted rather better by the hyperbolic distribution. Fig- 
ure 4 plots two samples which both distributions fit poor- 
ly. Figure 5 plots two samples which are fitted well except 
for a tendency towards bimodality. The closeness of  the 
fitted normal and hyperbolic curves depends on the size 
of  the hyperbolic scale parameter & Whenever it is large, 
the fitted curves are almost indistinguishable. 
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The fact that the hyperbolic distribution often fits the 
dune crest and dune side samples very well is consistent 
with the Bagnold (1941) and Barndorff-Nielsen (1977) 
assertion that it approximates well the grain-size distri- 
bution of  "regular sands." But it is also true that the log- 
normal distribution shows a high degree of  accord with 
many of  the samples. This is sufficient to reject the view 
of Bagnold and Barndorff-Nielsen (1980) that frequencies 
obtained from a real sample are unlikely ever to plot as 
a straight line on normal probability paper. 

About one-third of  the samples were either bimodal or 
showed the same sort of  irregularity just to the fight of  
the mode that Samples 2 and 19 do in Figure 5. Inability 
to make a model of  bimodality is clearly a shortcoming 
of both distributions. 

Another source of poor fit was large pan weights. This 
seriously affected eight samples, including Samples 66 
and 70 in Figure 4. 

Of the two normal parameters, the standard deviation 
best separated the three dune environments, while of  

the hyperbolic parameters the scale parameter ~ did best. 
In order to incorporate all the parameters of  each distri- 
bution, the canonical variates for discrimination were 
calculated. Figures 6 and 7 give scatter plots, together 

8 

U .  

- i -  

- 2 -  

-4- 

- 5 -  

- 8 "  

- 7 -  

- 8 -  

-9 

0 
-I 

0 

I 

2 

3 

4 

5 
5 

02 
side 

0.43 
0.57 

, , , , , , 

4 3 2 I 0 -I 5 

.51 

t 

l 

! 

. , , , . , 

4 3 2 I 0 -I  

Sieve sizes, 

FIG. 5.--Grain-size distributions of  two samples which show a ten- 
dency towards bimodality, but to which both the normal and hyperbolic 
distributions otherwise fit well. The sample and fitted cutrves arc dis- 
played above as a double-log histogram, below as a Q-Q plot. Also given 
are the normal (above) and hyperbolic (below) mean divergences. 

with approximate 95% confidence circles about the en- 
vironment means. The theory of  canonical variates is 
explained, for example, in Sections 11.5 and 12.5 of  Mar- 
dia and others (1979). Their effect is to project the pa- 
rameter vectors onto the plane which contains the three 
environment means, and to standardize so that each point 
has unit variance. Implicit in this is the assumption that 
the parameter vectors have multinorrnal distributions 
with a common covariance matrix. To improve the ap- 
proximation to these assumptions, logarithmic transfor- 
mations were made of the hyperbolic slope and scale 
parameters ~, 4~, and 7, and of  the normal standard de- 
viation a. 

The Wilk lambda statistic, calculated from the canon- 
ical correlations, showed that both the parameters of  both 
distributions separated the environments at very high 
levels o f  significance, higher for the normal. Figures 6 and 
7 show that both distributions dearly distinguish the dune- 
crest samples, but that the dune-side and dune-corridor 
samples overlap. Comparing Figure 6 with Figure 7 shows 
that all three environments are slightly better separated 
by the normal parameters. 

These qualitative results are confirmed by the number 
of  samples correctly classified. Maximum-likelihood dis- 
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criminant analysis classified each point on the canonical 
variate scatterplot to the environment, the mean of  which 
it is closest to. The normal parameters correctly classify 
21 of the 23 dune-crest samples, 22 of  the 30 dune-side 
samples and 11 of the 16 dune-corridor samples. The 
hyperbolic parameters correctly classify 19 of  the crest 
samples, 20 of the side samples and 10 of the corridor 
samples. These counts in fact overestimate the proportion 
of new samples which would be correctly classified using 
the same discriminant rule. I f  allowance were made for 
the overestimation, the difference between the normal 
and hyperbolic distributions would be increased. 

We believe that the better discrimination obtained from 
the normal parameters is due to better approximation to 
the normality and equal covariance assumptions, rather 
than to greater fidelity to the true mass-size distribution. 
This highlights the fact that fitting the hyperbolic distri- 
bution is a delicate procedure that makes great demands 
on the data. In any case, no advantage is had in this 
instance from the hyperbolic parameters over the normal. 

DISCUSSION 

From the above results it is concluded that no clear 
gain is obtained by characterizing the grain-size distri- 
butions of  eolian sediments by the adoption of  the log- 
hyperbolic distribution. The results indicate that the crit- 
icisms directed at the suitability of  the log-normal dis- 
tribution in describing sediment grain-size distributions 
are equally applicable to the log-hyperbolic distribution. 

An important reason for the adoption of the log-hy- 
perbolic distribution is the poor accord that the extremes 
of sediment grain-sizes show with the log-normal model 
(Bagnold and Barndorff-Nielsen 1980). It is claimed that 
the log-hyperbolic model encompasses these extreme val- 
ues much better. In this context the degree of  resolution 
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that sieving allows has to be borne in mind. It is recog- 
nized that sieving sorts the sediment particles by shape 
as well as by size (Rittenhouse 1943; Moss 1972; and 
Komar  and Cui 1984). Moss has pointed out that indi- 
vidually weighed suites of  quartz particles with very small 
size (volume) ranges were found to rest on four successive 
quarter-phi sieves. They were found to be fractionated 
by the sieves according to shape, with highly flattened 
particles coming to rest up to four sieves above highly 
elongated ones of  the same size. Hence, sieve analysis 
must show purely technological coarse and fine "tails," 
the former due to flattened particles and the latter to 
elongated particles. It is therefore apparent that extremes 
of  a grain-size distribution are as much an artifact of  the 
technique, as they may be physical entities resulting from 
the mechanics of sediment transport. 

In a tone of  censure, Bagnold and Barndorff-Nielsen 
pointed out that Bagnold drew attention to the log-hy- 
perbolic distribution in 1 9 3 7 - - " . . .  but so strong is the 
inertia of  tradition that the implications aroused but little 
interest until recently" (Bagnold and Barndortf-Nielsen 
1980, p. 200). While there would be little point in re- 
raining the log-normal simply because of convention, our 
results indicate that little is to be gained by adopting the 
log-hyperbolic distribution. The claims that have been 
made for the suitability of the log-hyperbolic distribution 
for describing the grain-size distributions of  eolian sedi- 
ments, and for the routine characterization of the textural 
characteristics of  deposidonal environments, require 
qualification. 
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