
Numerical Analysis

Gordon K. Smyth

in

Encyclopedia of Biostatistics
(ISBN 0471 975761)

Edited by

Peter Armitage and Theodore Colton

 John Wiley & Sons, Ltd, Chichester, 1998

Numerical Analysis

Numerical analysis is concerned with the accurate and efficient evalua-

tion of mathematical expressions, especially on computers with floating

point arithmetic. While scientists have always been concerned to some

extent with numerical computation, the modern discipline of numerical

analysis is almost entirely a product of the period since 1950, dur-

ing which there has been an explosion in the availability of electronic

computers. There are three main issues:

1. to organize computations so that there is minimum accumulation

of error in floating point arithmetic

2. to organize computations efficiently, so that they consume the least

possible resources

3. to obtain accurate numerical approximations to quantities which

may not have explicit mathematical expressions.

In other words, do it accurately, do it quickly, and do it cheaply.

It might be thought that numerical evaluation consists largely of

translating textbook formulas into a computer programming lan-

guage – a mere coding exercise – but this is very far from the case.

Direct translations of expressions from mathematical theory are seldom

optimal, and very often are found to fail in circumstances when a less

obvious numerical process would have succeeded.

2 Numerical Analysis

The focus on numerical results means that one is not limited to

direct expressions, but can evaluate functions which are defined only

indirectly, for example through integrals, differential equations, series,

or as solutions to equations. An important example is the maximum

likelihood estimator for a nonlinear statistical model (see Nonlinear

Regression). Indeed, an indirect method is often preferred for numerical

evaluation even when a direct expression exists.

While efficiency and accuracy are both aims, it is accuracy which

takes precedence, since a slightly slower accurate program is invariably

preferred to a faster one with unreliable accuracy. Errors arise from

three sources: (i) errors in the input data; (ii) computation errors due

to finite precision arithmetic; and (iii) approximation error. The first of

these is not under the control of the calculation; in fact it might be

considered to be the special concern of the statistician. Computation

error appears because of the difference between exact arithmetic and

the finite-length arithmetic available on digital computers and hand

calculators. Approximation error occurs when the computed expression

is not exactly equal to the theoretical quantity even in exact arithmetic.

An integral is replaced with a sum, for example, or an infinite series is

evaluated only to a finite number of terms.

Efficiency is usually measured by counting basic floating point

Numerical Analysis 3

operations (flops), such as additions, subtractions, multiplications, and

divisions. Another consideration is to minimize the use of computer

memory and other space requirements, especially for large jobs. More

recent concerns which arise from modern computer architecture

include parallel computing (designing algorithms so that they can

be evaluated in parallel streams on fast computers with multiple

processors) and local referencing (minimizing unnecessary paging of

virtual memory).

It is also desirable to keep programs simple and understandable, thus

making the programs easy to maintain and to modify. Users must often

choose between using compact programs which can be tinkered with

for their own use, and using sophisticated high-performance software

from public libraries, which cannot be modified and must be taken

somewhat on trust.

Most biostatisticians can benefit from familiarity with numerical

analysis. An understanding of the numerical methods being used and

an idea of when they will perform well or poorly is necessary even

for users of standard statistical package programs (see Software,

Biostatistical). You must still understand the program’s purpose and

limitations to know whether it applies to your particular situation or

not. More importantly, many problems cannot be solved by simple

4 Numerical Analysis

application of a standard program. If you develop your own software,

a knowledge of numerical analysis can help avoid numerical pitfalls

that can occur easily in a number of problems.

A justifiably popular text on scientific computing is Press et al. [9],

which contains a lot of advice on routines to use. Other good general

texts on numerical analysis are by Atkinson [3] and Stoer & Bulirsch

[12]. An introduction with some statistical orientation is by Thisted

[13]. An elegant and elementary introduction to the fundamental ideas

of numerical analysis is given by Stewart [11].

This article discusses the basic ideas of accuracy and describes briefly

key topics in numerical analysis which are treated at more depth in

separate articles. Pointers to available software are given at the end of

the article.

Conditioning

The concept of conditioning refers to the intrinsic difficulty of a numer-

ical problem. A problem is ill-conditioned if it is sensitive to perturba-

tions in the data, and well-conditioned if it is not. Conditioning is often

quantified by a condition number which refers to the amplification of

relative errors. Suppose that x is the exact argument to a function f

but unfortunately only an approximation x̃ is available. The condition

number κ of f at x is defined, with respect to a given norm (|| · ||),

Numerical Analysis 5

by the relation

||f (x̃) − f (x)||
||f (x)|| ≈ κ

||x̃ − x||
||x||

for x̃ near x. If κ is large, then errors in x are magnified in the evaluation

of f (x), while the opposite is true if κ is small. If κ = 10k , then k is

roughly the number of significant figures of accuracy we can expect to

lose in the computation.

For univariate, differentiable functions, the condition number is

essentially κ = |xf ′(x)/f (x)|. For example, f (x) = (x − 1)6 is an ill-

conditioned function near x = 1, while f (x) = x1/2 is well-conditioned

for any x > 0.

For general multivariate functions, the specific definition of condition

number depends on the problem. For example, the computation of

regression coefficients from a multiple regression is ill-conditioned

when the design matrix X displays collinearity. Conditioning also

depends on the quantity of interest. A least squares regression may

be ill-conditioned from the point of view of the regression coefficients

but well-conditioned from the point of view of the fitted values.

Stability

A stable algorithm is one which evaluates a function to the accuracy

allowed by the function’s condition number. A stable algorithm there-

fore will evaluate a well-conditioned function accurately, and will do

6 Numerical Analysis

as well as can be expected on an ill-conditioned problem. For example,

consider the problem of computing the sample variance of the three

numbers:

62, 63, 64

using four-digit decimal arithmetic. A commonly taught formula for

the variance is

s2 = 1

n − 1

(
n∑

i=1

x2
i − nx2

)
,

where n is the sample size and the xi are the observations. Since the data

are given to two significant figures, it might be thought that carrying

four significant figures through the calculation will leave a more

than adequate safety margin. In this case
∑

x2
i = 3844 + 3969 + 4096,

which is 1191 × 101 in 4-digit arithmetic. Similarly, nx2 = 3(632) is

1191 × 101 to 4 digits. Therefore, s2 is computed to be 0, a 100%

error compared with the true value of 1. Alternative algorithms are

available: for example, s2 = ∑
(xi − x)2/(n − 1), which evaluates to

[(−1)2 + 02 + 12]/2 = 1 – the correct answer in this case. The first

formula is unstable, while the second formula is stable. There are many

other algorithms for computing the sample variance, some of which are

of great interest to manufacturers of hand calculators; see Chan et al.

[4] for a discussion.

Numerical Analysis 7

The error in the first formula above arises in the rounding errors of

∑
x2

i and nx2, and the error is revealed when the difference is taken of

the two large and nearly equal quantities. This is often called subtractive

cancellation, although rounding error occurred not in the subtraction but

in the previous summation. It is a general principle that one cannot add

a large value to a floating point number and later subtract it without

losing accuracy. One concern, therefore, of numerical analysis is to

limit the growth in size of intermediate quantities in calculations. For

example, a summation is generally stable if the summands are all of

one sign. In this case, the partial sums cannot be greater in absolute

value than the final sum.

There is often a close relationship between stability in numerical

analysis and in statistics. Frequently, parameters which are statistically

interpretable because they measure some invariant characteristic of a

problem appear also in a stable algorithm, because of the need to

compute quantities which do not grow without bound. Even the small

example above gives an example of this, as the xi − x are the well-

known residuals, while in the textbook formula
∑

x2
i and nx2 are

merely intermediate quantities, not statistically useful quantities in their

own right.

Let f̃ (x) be the approximation to f (x) which arises from an

8 Numerical Analysis

algorithm. The algorithm is called backwardly stable if f̃ (x) can be

shown to be equal to the exact evaluation of f at x̃, where x̃ is close

to x. In this way, a (backwardly) stable algorithm will compute a well-

conditioned function accurately, and will compute an ill-conditioned

function as accurately as is allowed by its conditioning.

Although proving error bounds is an important part of modern

numerical analysis, the specific bounds obtained are usually pessimistic

and are seldom used in practice. In general, rounding-error analyses are

less valued for their final bounds than for the insight they provide about

a numerical algorithm. A thorough treatment of rounding-error analyses

can be found in Higham [6].

Floating Point Arithmetic

There are an infinite number of real numbers, but only a finite num-

ber can be represented on a computer. Therein lies the fundamental

difference between exact and computer arithmetic, alluded to above.

Numbers are represented on computers in floating point form, i.e.

f × βe in terms of a base β, fraction f , and exponent e. For example,

2.597 × 10−3

is a base-10 floating point number with four figures of accuracy. Most

computers use base 2, and the resulting arithmetic is called binary

Numerical Analysis 9

arithmetic.

Finite computer arithmetic produces three types of errors. When

an arithmetic operation produces a number with an exponent that

is too large, the result is said to have overflowed. Similarly, an

arithmetic operation that produces an exponent that is too small is said

to have underflowed. Even within the limits of the exponent, most

numbers cannot be represented exactly on floating point arithmetic

of a fixed word length. The resulting inaccuracy is called rounding

error. It is a central concern of numerical analysis that rounding errors

do not accumulate during a long computation (see Floating Point

Arithmetic).

Linear Equations and Matrix Computations

The theory and practice of solving a linear system

Ax = b

for x, and, more generally, the whole subject of computations involving

matrices, is now very well developed (see Matrix Computations).

Here, we outline two applications of interest to biostatisticians.

In least squares regression of a response vector y on a design matrix

X, numerical analysts have influenced statisticians to move away from

the normal equations for the regression coefficients in favor of methods

10 Numerical Analysis

based on the decomposition

X = QR,

where Q is an orthogonal matrix and R is upper triangular. This

is because the QR approach is backwardly stable, while the normal

equations are not.

Conditioning for the least squares problem is determined by that of

X, which can be analyzed through the singular value decomposition

X = UDVT,

where U and V are orthogonal and D is diagonal containing the singular

values. The condition number of X is usually defined to be the ratio

of the largest to the smallest singular value. If the columns of X

are standardized; say, by dividing by the sample standard deviation

of the column, then the singular values entirely capture the idea of

ill-conditioning and collinearity for the least squares problem. The

singular value decomposition therefore gives statisticians the means

to quantify collinearity, and there are those who propose its routine use

in regression computations for that reason [9, Section 15.4].

Numerical linear algebra is dealt with in more detail in the article

on Matrix Computations.

Numerical Analysis 11

Optimization and Nonlinear Equations

Optimization means to find that value of x which maximizes or min-

imizes a given function f (x). This is a central concern in statistics,

because statistical estimation principles such as least squares, max-

imum likelihood, posterior mode (see Bayesian Methods) and M-

estimation (see Robustness) are defined in terms of optimizing an

appropriate objective function. Numerical optimization strategies come

into play when the statistical model is nonlinear and analytic estimators

of the parameters are not available.

A closely related problem is that of solving nonlinear equations.

Many algorithms for optimizing f (x) are, in fact, derived from algo-

rithms for solving ∂f/∂x = 0, where ∂f/∂x is the derivative vector of

f with respect to x.

Details are given in the article on Optimization and Nonlinear

Equations.

Interpolation and Approximation

The purpose here is accurately to approximate complex functions with

ones which are easy to evaluate. For example, rational function approx-

imations to the standard normal distribution function and its inverse

allow it to be computed rapidly within statistical programs. Typical

12 Numerical Analysis

methods include series expansions, rational functions, and polyno-

mials (see, for example, Press et al. [9, Chapter 5] and Polynomial

Approximation). A great many approximation formulas are given in

Abramowitz & Stegun [1].

Numerical Integration

After matrix computations, numerical integration is one of the largest

areas of numerical analysis. A large number of sophisticated and reli-

able methods are available for numerical integration in one dimen-

sion. Unfortunately, for statisticians wanting to evaluate mixture mod-

els or Bayesian marginal posteriors, the picture is less clear in high

dimensions. Statisticians have made a substantial contribution to high-

dimensional integration through the development of efficient Monte

Carlo methods. A survey of integration methods is given in the article

on Numerical Integration.

Available Software

The final goal of numerical analysis is to make numerical methods

generally available through high-quality portable software. Numerical

analysts were also early users of the internet, and a wide range of

software is available online. Netlib is the most extensive collection of

numerical programs. Its URL is http://www.netlib.org.

Numerical Analysis 13

Worthy of special mention are the LINPACK library [5] for linear

algebra and the EISPACK library [10] for eigenvalue computations,

both from the Argonne National Laboratory. These are published,

documented and freely available, and have gained wide acceptance

by statisticians and other scientists. The two libraries have now been

combined and updated as LAPACK [2]. Other libraries of note include

the QUADPACK library [8] for numerical integration, and the SLATEC

library – an enormous library of FORTRAN programs.

The Guide to Available Mathematical Software (GAMS) at

http://gams.nist.gov provides a virtual database of documented and

supported programs, searchable by program and problem type. The

journal ACM Transactions of Mathematical Software is a source of

refereed software, also searchable by GAMS.

Commercial subroutine libraries include the NAG Library (Numer-

ical Algorithms Group) and the IMSL Mathematics and Statistics

Libraries. LINPACK, EISPACK, and other routines have also been

incorporated into the interactive matrix programming language, MAT-

LAB [7].

Another popular commercial source is Numerical Recipes [9], acces-

sible through http://nr.harvard.edu/nr. Numerical Recipes supplies

smaller, understandable programs, which may be modified by users

14 Numerical Analysis

for specific applications. Netlib, GAMS, NAG, and IMSL provide

more sophisticated routines designed for high performance on large

problems. Considerable effort has been expended to make the high-

performance routines efficient, memory-compact, and capable of trap-

ping most errors.

Programs developed by statisticians, dealing specifically with statisti-

cal problems, can be found at Statlib, the statistical database maintained

at Carnegie-Mellon University. The URL is http://lib.stat.cmu.edu.

References

[1] Abramowitz, M. & Stegun, I.A. (1962). Handbook of Mathematical Functions. National

Bureau of Standards, Washington. Reprinted by Dover, New York, 1965.

[2] Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., DuCroz, J., Greenbaum, A.,

Hammerling, S., McKenney, A., Ostrouchov, S. & Sorensen, D. (1995). LAPACK Users’

Guide, Release 2.0, 2nd Ed. SIAM Publications, Philadelphia.

[3] Atkinson, K.E. (1989). An Introduction to Numerical Analysis, 2nd Ed. Wiley, New York.

[4] Chan, T., Golub, G. & Leveque, R. (1983). Algorithms for computing the sample variance:

analysis and recommendations, American Statistician 37, 242–247.

[5] Dongarra, J.J. et al. (1979). LINPACK Users’ Guide. SIAM, Philadelphia.

[6] Higham, N.J. (1996). Accuracy and Stability of Numerical Algorithms. Society for Indus-

trial and Applied Mathematics, Philadelphia.

[7] Moler, C., Little, J. & Bangert, S. (1987). Pro-Matlab User’s Guide. The Math Works,

Sherborn.

[8] Piessens, R., De Doncker-Kapenga, E., Überhuber, C.W. & Kahaner, D.K. (1983).

Quadpack, a Subroutine Package for Automatic Integration. Springer-Verlag, Berlin.

[9] Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (1992). Numerical

Recipes in Fortran. Cambridge University Press, Cambridge.

Numerical Analysis 15

[10] Smith, B.T., Boyle, J.M., Ikebe, Y., Klema, V.C. & Moler, C.B. (1970). Matrix Eigensys-

tem Routines: EISPACK Guide, 2nd Ed., in Lecture Notes in Computer Science, Vol. 6.

Springer-Verlag, New York.

[11] Stewart, G.W. (1996). Afternotes on Numerical Analysis. Society for Industrial and

Applied Mathematics, Philadelphia.

[12] Stoer, J. & Bulirsch, R. (1993). Introduction to Numerical Analysis, 2nd Ed. Springer-

Verlag, New York.

[13] Thisted, R.A. (1988). Elements of Statistical Computing. Numeric Computation. Chapman

& Hall, New York.

(See also Computer Algebra)

GORDON K. SMYTH

