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Optimization and Nonlinear Equations

Optimization means finding that value of x which maximizes or

minimizes a given function f (x). The idea of optimization goes to the

heart of statistical methodology, as it is involved in solving statistical

problems based on least squares, maximum likelihood, posterior

mode (see Bayesian Methods), and so on.

A closely related problem is that of solving a nonlinear equation,

g(x) = 0

for x, where g is a possibly multivariate function. Many algorithms

for minimizing f (x) are in fact derived from algorithms for solving

g = ∂f/∂x = 0, where ∂f/∂x is the vector of derivatives of f with

respect to the components of x.

Except in linear cases, optimization and equation solving invariably

proceed by iteration. Starting from an approximate trial solution, a

useful algorithm will gradually refine the working estimate until a

predetermined level of precision has been reached. If the functions are

smooth, a good algorithm can be expected to converge to a solution

when given a sufficiently good starting value.

A good starting value is one of the keys to success. In general, finding

a starting value requires heuristics and an analysis of the problem. One
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strategy for fitting complex statistical models, by maximum likelihood

or otherwise, is to progress from the simple to the complex in stages.

Fit a series of models of increasing complexity, using the simpler

model as a starting value for the more complicated model in each

case. Maximum likelihood iterations can often be initialized by using

a less efficient moment estimator (see Method of Moments). In some

special cases, such as generalized linear models, it is possible to use

the data themselves as starting values for the fitted values.

An extremum (maximum or minimum) of f can be either global

(truly the extreme value of f over its range) or local (the extreme value

of f in a neighborhood containing the value); see Figure 1. Generally it

is the global extremum that we want. (A maximum likelihood estimator,

for example, is by definition the global maximum of the likelihood.)

f(x)
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Figure 1 The function f (x) has a local minimum at x2 and a global minimum at x1. The

points A = [a, f (a)],B = [b, f (b)], and C = [c, f (c)] bracket the global minimum. The

next point tried by a golden section search would be D
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Unfortunately, distinguishing local extrema from the global extremum

is not an easy task. One heuristic is to start the iteration from several

widely varying starting points, and to take the most extreme (if they

are not equal). If necessary, a large number of starting values can be

randomly generated. Another heuristic is to perturb a local extremum

slightly to check that the algorithm returns to it. A relatively recent

algorithm, simulated annealing, is often used successfully on problems

where there are a large number of closely competing local extrema.

This article discusses unconstrained optimization. Sometimes, how-

ever, x must satisfy one or more constraints. An example is some of

the components of x being known a priori to be positive. In some cases

the constraints may be removed by a suitable transformation (xi = ezi ,

for example), or by use of Lagrange multipliers.

One must choose between algorithms which use derivatives and those

which do not. In general, methods which use derivatives are more

powerful. However, the increase in speed does not always outweigh

the extra overheads in computing the derivatives, and it can be a great

convenience for the user not to have to program them.

Algorithms are also distinguished by the amount of memory they

consume. Storage requirements are typically order N or order N2,

where N is the dimension of x. In most biostatistical applications, N
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is not usually so large that storage becomes an issue.

If you can calculate first and second derivatives of f , then the

well-known Newton’s method is simple and works well. It is crucially

important, though, to check the function value f (x) at each iteration,

and to implement some sort of backtracking strategy, to prevent the

Newton iteration from diverging to distant parts of the parameter space

from a poor starting value. If second derivatives are not available, then

quasi-Newton methods, of which Fisher’s method of scoring is one, can

be recommended. General-purpose quasi-Newton algorithms build up a

working approximation to the second-derivative matrix from successive

values of the first derivative. If computer memory is very critical,

then conjugate gradient methods make the same assumptions as quasi-

Newton methods but require only order N storage [8, Section 10.6].

If even first derivatives are not available, the Nelder–Mead downhill

simplex algorithm is compact and reasonably robust. However, the

slightly more complex direction-set methods or Newton methods with

finite difference approximations to the derivatives should minimize

most functions, with fewer function evaluations. Whilst all the above

comments apply generally, the one-dimensional problem is something

of a special case. In one dimension, once one can provide an interval

which contains the solution, there exist efficient “low-tech” algorithms
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robust enough to take on all problems.

A practical introduction to root finding and optimization is given in

Chapters 9, 10, and 15 (Sections 15.5 and 15.7) of Numerical Recipes

[8]. More specialist texts are Dennis & Schnabel [2], Fletcher [3], and

Gill et al. [4]. A classic but technical text on solving nonlinear equations

is Ortega & Rheinboldt [6]. A survey of available software is given by

Moré & Wright [5].

One Dimension

The case where x is one-dimensional is not just a special case, it is also

qualitatively simpler than the multidimensional case. This is because a

solution can be trapped between bracketing values, which are gradually

brought together. A root of g(x) is bracketed in the interval (a, b) if

f (a) and f (b) have opposite signs. A minimum of f (x) is bracketed by

a triplet of values, a < b < c, if f (b) is less than both f (a) and f (c).

The simplest and most robust method for finding a root in a

bracketing interval is bisection. That is, we evaluate the function g at

the midpoint of (a, b) and examine its sign. The midpoint then replaces

whichever end point has the same sign. After k iterations, the root is

known to lie in an interval of length (b − a)/2k .

The equivalent method for function minimization is the golden

section search. Given a bracketing triplet of points, the next point to
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be tried is that which is a fraction 0.38197 of the way from the middle

point of the triplet to the farther end point (Figure 1). One then drops

whichever of the end points is farthest from the new minimum. The

strange choice of step size ensures that at each iteration the middle

point is always the same fraction of the way from one end point to the

other (the so-called golden ratio). After k iterations, the minimum is

bracketed in an interval of length (c − a)0.61803k .

Bisection and golden section search are linear methods, in that

the amount of work required increases linearly with the number of

significant figures required for x. There are a number of other methods,

such as the secant method, the method of false position, Muller’s

method, and Ridder’s method, which are capable of superlinear

convergence, wherein the number of significant figures liberated by

a given amount of computation increases as the algorithm converges.

The basic idea is that g should be roughly linear in the vicinity of a root.

These methods interpolate a line or a quadratic polynomial through two

or three previous points, and use the root of the polynomial as the next

iterate. They therefore converge more rapidly than bisection or golden

search when the function g is smooth, but can converge slowly when g

is not well approximated by a low-order polynomial. They also require

modification if they are not to risk throwing the iteration outside the
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bracketing interval known to contain the root.

It is an advantage to use one of the higher-order interpolating

methods when the function g is nearly linear, but to fall back on the

bisection or golden search methods when necessary. In that way a

rate of convergence at least equal to that of the bisection or golden

section methods can be guaranteed, but higher-order convergence can

be enjoyed when it is possible. Brent [1, 8] has published methods

which do the necessary bookkeeping to achieve this, and which can

be generally recommended for root finding or minimizing in one

dimension. Brent’s algorithms do not require the derivatives of f or g

to be supplied. However, the method for minimizing a function can be

easily modified to make use of the derivative when it is available [8].

Newton’s Method

The most celebrated of all methods for solving a nonlinear equation

is Newton’s method, also called Newton–Raphson. Newton’s method

is based on the idea of approximating g with its linear Taylor series

expansion about a working value xk . Let G(x) be the matrix of partial

derivatives of g(x) with respect to x. Using the root of the linear

expansion as the new approximation gives

xk+1 = xk − G(xk)−1g(xk)
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g(x)

O x0 x2 x1 x

Figure 2 Newton’s method converges quadratically from the starting value x0

(see Figure 2).

The same algorithm arises for minimizing f (x) by approximating f

with its quadratic Taylor series expansion about xk . In the minimization

case, g(x) is the derivative vector (gradient) of f (x) with respect to x

and the second derivative matrix G(x) is symmetric. Beware, though,

that Newton’s method as it stands will converge to a maximum just as

easily as to a minimum.

If f is a log likelihood function, then g is the score vector and −G

is the observed information matrix. Newton’s method for maximizing

the likelihood is based on the same quadratic expansion which underlies

asymptotic maximum likelihood theory.

Newton’s method is powerful and simple to implement. It will

converge to a fixed point from any sufficiently close starting value.

Moreover, once it starts to home in on a root, the convergence is

quadratic. This means that, if the error is ε, the error after one more
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iteration is of order ε2. In other words, the number of significant places

eventually doubles with each iteration. However, its global convergence

properties are poor. If xk is unlucky enough to occur near a turning point

of g, then the method can easily explode, sending the next estimate far

out into the parameter space (Figure 3). In fact, the set of values for

which Newton’s method does and does not converge can produce a

fractal pattern [8].

The problems with Newton’s method are: (i) an inability to

distinguish maxima from minima; and (ii) poor global convergence

properties. Both problems can be solved effectively through a restricted

step suboptimization [3]. Suppose we want to minimize f (x). A

condition for a minimum is that G(x) be positive definite. We therefore

add a diagonal matrix to G to ensure that it is positive definite:

xk+1 = xk − [G(xk) + λkI]−1g(xk).

It is always possible to choose λk sufficiently large so that f (xk+1) <

g(x)

O x1 x0 x

Figure 3 Newton’s method diverges from the starting value x0
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f (xk). A simple algorithm then is to choose λk just large enough to

ensure a descent step. As the iteration converges to a minimum, λk

can be decreased towards zero so that the algorithm enjoys superlinear

convergence. This is the algorithm of choice when derivatives of f are

available.

Solving g(x) = 0, when g is not the gradient of some objective

function f , is slightly more difficult. One can manufacture a stand-in

objective function by defining

f (x) = g(x)Tg(x).

Then the root of g occurs at a minimum of f . Note, however, that g

is not the derivative of f , so that the above restricted step strategy is

not available. In this case we can replace the Newton step with the line

search strategy,

xk+1 = xk − αkG(xk)−1g(xk),

where 0 < αk < 1. It is always possible to choose αk sufficiently

small that f (xk+1) < f (xk). The line search idea is to implement

a one-dimensional suboptimization at each step, minimizing f (xk+1)

approximately with respect to αk.

Both the restricted step and the line search algorithms have global
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convergence properties. They can be guaranteed to find a local mini-

mum of f and a root of g if such exist.

Quasi-Newton Methods

One of the drawbacks of Newton’s method is that it requires the analytic

derivative G at each iteration. This is a problem if the derivative is very

expensive or difficult to compute. In such cases it may be convenient

to iterate according to

xk+1 = xk − A−1
k g(xk),

where Ak is an easily computed approximation to G(xk). For example,

in one dimension, the secant method approximates the derivative with

the difference quotient

ak = g(xk) − g(xk−1)

xk − xk−1
.

Such an iteration is called a quasi-Newton method. If Ak is positive

definite, as it usually is, an alternative name is variable metric method.

One positive advantage to using an approximation in place of G is

that Ak can be chosen to be positive definite, ensuring that the step

will not be attracted to a maximum of f when one wants a minimum.

Another advantage is that A−1
k g(xk) is a descent direction from xk ,

allowing the use of line searches.
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The best known quasi-Newton method in statistical contexts

is Fisher’s method of scoring, which is treated in more detail

below. Among general purpose quasilikelihood algorithms, the best is

probably the Broydon–Fletcher–Goldfarb–Shanno (BFGS) algorithm.

BFGS builds upon the earlier and similar Davidon–Fletcher–Powell

algorithm. BFGS starts with a positive-definite matrix approximation

to G(x0), usually the identity matrix. At each iteration it makes a

minimalist (rank two) modification to A−1
k to gradually approximate

G(xk)−1. Both DFP and BFGS are robust algorithms showing

superlinear convergence.

Statisticians might fall into the trap of thinking that the final approx-

imation A−1
k is a good approximation to G−1(xk) at the final estimate.

Since Ak is chosen to approximate G(xk) only in the directions needed

for the Newton step, it is useless for the purpose of providing standard

errors for the final estimates.

Fisher’s Method of Scoring

Of frequent interest to statisticians is the case where f (x) is a log

likelihood function and x is the vector of unknown parameters. Then

g is the score vector and −G is the observed information matrix.

For many models (curved exponential families are the major class),

the Fisher information, I(x) = E[−G(x)], is much simpler in form
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than −G(x) itself. Furthermore, since I(x) = var[g(x)],I(x) is positive

definite for any parameter value x for which the statistical model is not

degenerate. The quasi-Newton method which replaces −G(x) with I(x)

is known as Fisher’s method of scoring [7, Section 5g]. Fisher scoring

is linearly convergent, at a rate which depends on the relative difference

between observed and expected information [10].

Consider the special case of nonlinear least squares, in which

context Fisher scoring has a very long history and is known as the

Gauss–Newton algorithm. The objective function is

f (β) =
n∑

i=1

[yi − µ(ti , β)]2,

where the yi are observations and µ is a general function of covariate

vectors ti and the vector of unknown parameters β. Write y for the

vector of yi,µ for the vector of µ(ti , β), and µ̇ for the derivative

matrix of µ with respect to β. The Fisher scoring iteration becomes

βk+1 = βk + (µ̇Tµ̇)−1µ̇T(y − µ),

where all terms on the right-hand size are evaluated at βk. The

updated estimate is obtained by adding to βk the coefficients from the

multiple regression of the residuals y − µ on the derivative matrix µ̇.

Gauss–Newton therefore solves the nonlinear least squares problem by

way of a series of linear regressions.
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The Gauss–Newton algorithm can be speeded-up considerably in the

special case that some of the β appear linearly in µ. For example, if

µ(ti; β) = β1 exp(−β3ti) + β2 exp(−β4ti),

then β1 and β2 are linear parameters. In such cases, the Gauss–Newton

iteration can be restricted to the nonlinear parameters, β3 and β4. This

idea is known as separable least squares; see, for example, Seber &

Wild [9, Section 14.7]. Smyth [10] discusses the same principle in the

context of maximum likelihood estimation.

Perhaps the most important application of Fisher scoring is to

generalized linear models (GLMs). GLMs extend the idea of nonlinear

regression to models with nonnormal error distributions, including

logistic regression and loglinear models as special cases. GLMs

assume that yi is distributed according to a probability density or mass

function of the form

p(y; θi, σ 2) = a(y, σ 2) exp
{

1

σ 2
[y θi − b(θi)]

}

for some functions b and a (a curved exponential family). We find that

E(yi) = µi = b′(θi) and var(yi) = σ 2v(µi), where v(µi) = b′′(θi). If

the mean µi of yi is as given above for the nonlinear least squares,

then the Fisher scoring iteration for β is a slight modification of the
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Gauss–Newton iteration:

βk+1 = βk + (µ̇TV−1µ̇)−1µ̇TV−1(y − µ),

where V is the diagonal matrix of the v(µi). The update for β iteration

is still obtained from a linear regression of the residuals on µ̇, but now

the observations are weighted inversely according to their variances.

Classical GLMs assume a link-linear model of the form

h(µi) = xT
i β

for some link function h. In that case the Fisher scoring update can be

reorganized as

βk+1 = (XTWX)−1XTWz,

where z is a working vector with components zi = h′(µi)(yi − µi) +

h(µi) and W is a diagonal matrix of working weights 1/[h′′(µi)
2v(µi)].

The updated β is obtained from weighted linear regression of the

working vector z on X. Since X remains the same throughout the

iteration, but the working weights change, this iteration is known as

iteratively reweighted least squares (IRLS).

When the observations yi follow an exponential family distribution,

observed and expected information coincide, so that Fisher scoring is

the same as Newton’s method. For GLMs this is so if h is the canonical
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link. We can conclude from this that IRLS is quadratically convergent

for logistic regression and loglinear models, but linearly convergent

for binomial regression with a probit link, for example (see Quantal

Response Models). In practice, rapid linear regression is difficult to

distinguish from quadratic convergence.

Nonderivative Methods

The Nelder–Mead downhill simplex algorithm is a popular derivative-

free optimization method. It is based on the idea of function compar-

isons amongst a simplex of N + 1 points. Depending on the function

values, the simplex is reflected or shrunk away from the maximum

point. Although there are no theoretical results on the convergence of

the algorithm, it works very well on a range of practical problems. It

is a good choice when you want a once-off solution with minimum

programming effort.

If you are prepared to use a more complex program, the best

performing methods for optimization without derivatives are quasi-

Newton methods with difference approximations for the gradient vector.

These programs require only the objective function as input, and

compute difference approximations for the derivatives internally. Note

that this is different from computing numerical derivatives and inputting

them as derivatives to a program designed to accept analytic derivatives.
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Such a strategy is unlikely to be successful, as the numerical derivatives

are unlikely to show the assumed analytic behavior.

Close competitors to the finite-difference methods are direction set

methods. These methods perform one-dimensional line searches in a

series of directions which are chosen to be approximately conjugate,

i.e. orthogonal with respect to the second derivative matrix. The best

current implementation is given by Brent [1].

EM Algorithm

The EM algorithm is not an optimization method in its own right, but

rather a statistical method of making optimization easier. The idea is

the possibility that the log likelihood �(y; θ) might be easier to maxi-

mize if there were additional observations or information. Let z be the

completed data, and let �(z; θ) be the log likelihood for z. Maximizing

the incomplete likelihood �(y; θ) is equivalent to maximizing the con-

ditional expectation of the complete likelihood given y,E[�(z; θ)|y). In

most cases, the EM is applied when the complete likelihood can be

maximized in one step. However, the conditional expectation changes

with the updated estimate of θ. So the optimization proceeds by alter-

nate steps of expectation and maximization – hence the name “EM”.

The EM algorithm is linearly convergent, at a rate which depends

on the proportion of observed to unobserved Fisher information. Let
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ρ be the fraction of the Fisher information for a particular parameter

in the complete log likelihood �(z; β) which is not actually observed.

Then the error in the estimate for that parameter after each iteration

is εk+1 ≈ ρεk. The proportion ρ can in applications be very close, or

even equal, to one for some parameters, so that convergence can be

very slow. On the other hand, the EM algorithm normally converges

even from poor starting values. The iteration can often be speeded up

by Aitkin acceleration, which attempts to convert linear convergence

into quadratic convergence [8, p. 92].

Software

Optimization software is included in the commercial subroutine

libraries IMSL and NAG, and in many statistical programs such as

SAS, S-PLUS, MATLAB, and Gauss (see Software, Biostatistical).

Publicly available software can be obtained by searching the NETLIB

online library at http://www.netlib.org/. The guides and software

provided by the Optimization Technology Center at the Argonne

National Laboratory at the URL, http://www.mcs.anl.gov/home/otc/,

are also worth considering. Less elaborate programs suitable for user

modification can be found in Numerical Recipes [8].
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