The Matrix Exponential

Gordon K. Smyth
Department of Mathematics
University of Queensland
17 March 1997

One of the most frequently occurring matrix functions is the matrix exponential, defined for a square matrix A by

$$e^{At} = \sum_{j=0}^{\infty} \frac{(At)^j}{j!}.$$

The matrix exponential arises from the differential equation

$$x'(t) = Ax(t), \quad t \geq 0$$

where $x(t) = \{x_1(t), \ldots, x_n(t)\}^T$ is a vector-valued function of the real argument t. If $x(t)$ satisfies the initial value condition $x(0) = v$, then it can be shown [2] that the solution for $x(t)$ is

$$x(t) = e^{At}v.$$

The linear differential equation above arises in homogeneous continuous time Markov chains, for which $x_j(t)$ is the probability that the Markov chain is in state j at time t, and A is the matrix of instantaneous transition rates. Another application is to compartment models, which are common in pharmacokinetics, where the exchange of materials in biological systems is studied [3]. A system is divided into compartments, and it is assumed that the rates of flow of drugs between compartments follow first order kinetics, so that the rate of transfer to a receiving compartment is proportional to the concentration in the supplying compartment. In this case, $x_j(t)$ is the concentration of the drug in the jth compartment at time t, while the elements of A are the transfer rates between the compartments. See [4] and [1, Chapter 5].

If the matrix A is diagonalizable, then the matrix exponential can be viewed as transforming the eigenvalues while leaving the eigenvectors unchanged. Suppose that

$$A = UDU^{-1}$$
where $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$ is a diagonal matrix of eigenvalues, and the columns of U are the corresponding eigenvectors. Then

$$\exp(At) = U e^{Dt} U^{-1}$$

where e^{Dt} represents the diagonal matrix with diagonal elements $e^{\lambda_1 t}, \ldots, e^{\lambda_n t}$.

Numerous algorithms for computing $\exp(At)$ have been proposed, but most of them are of dubious numerical quality, as pointed out in the survey article by Moler and Van Loan [5]. In Markov chain contexts the actual matrix exponential is not required, only the product of $\exp(At)$ and the initial value v. This is significant, as A may be of large dimension but consist mainly of zeros. The computation of $e^{At}v$ in the Markov chain context is discussed in detail in [7] and [6]. Software associated with [6] is available from http://www.maths.uq.edu.au/expokit/.

References

