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Abstract

This article focuses on the process of approximating a definite integral from
values of the integrand when exact mathematical integration is not available.
This problem arises in statistics when marginal density functions or expected
values of random variables are required. The article describes classical univariate
quadrature methods including the trapezoidal rule, Simpson’s rule, Newton-Cotes
formulas, Clenshaw-Curtis integration and Gaussian quadrature. Refinements
including adaptive methods, treatment of singularities, and progressive rules of
the Gaussian type are also mentioned. A survey is given of the possibilities and
limitations of multiple integration methods, including product rules, globally
adaptive methods, rules of polynomial degree, lattice methods and Monte Carlo
integration. Detailed pointers are given to available software.
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1 Introduction

Numerical integration is the study of how the numerical value of an integral can be
found. Also called quadrature, which refers to finding a square whose area is the
same as the area under a curve, it is one of the classical topics of numerical analysis*.
Of central interest is the process of approximating a definite integral from values of
the integrand when exact mathematical integration is not available. The correspond-
ing problem for multiple dimensional integration is known as multiple integration or
cubature.

Numerical integration has always been useful in biostatistics to evaluate distri-
bution functions and other quantities. Emphasis in recent years on Bayesian and
empirical Bayesian methods and on mixture models has greatly increased the impor-
tance of numerical integration for computing likelihoods and posterior distributions

*With minor revisions 1 February 2016.



and associated moments and derivatives. Many recent statistical methods are depen-
dent especially on multiple integration, possibly in very high dimensions.

This article describes classical quadrature methods and, more briefly, some of the
more advanced methods for which software is widely available. The description of the
elementary methods in this article borrows from introductory notes by Stewart [30].
An excellent general reference on numerical integration is [5]. More recent material
can be found in [7] and [28]. Recent surveys of numerical integration with emphasis
on statistical methods and applications are [9] and [8].

2 Trapezoidal Rule

The simplest quadrature rule in wide use in the trapezoidal rule. Like many other
methods, it has both a geometric and an analytic derivation. The idea of the geometric
derivation is to approximate the area under the curve y = f(x) from x = a tox = b by
the area of the trapezoid bounded by the points (a,0), (b,0), (a, f(a)) and (b, f()).
This gives
b b—a
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The analytic derivation is to interpolate f(z) at a and b by a linear polynomial.

The trapezoidal rule cannot be expected to give accurate results over a larger
interval. However by summing the results of many applications of the trapezoidal
rule over smaller intervals, we can obtain an accurate approximation to the integral
over any interval. We begin by dividing [a, b] into n equal intervals by the points

a=r9g<x1 < < xp_1<xTpp =0

Specifically, if

is the common length of the intervals, then
r;=a+1th, 1=0,1,...,n.

Applying the trapezoidal rule to each interval [z;_1, x;] gives the composite trapezoidal
rule ) ; Fon)
i) T
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An error formula for the composite trapezoidal rule can be obtained from polyno-
mial approximation theory. Let CT}(f) denote the approximation produced by the
composite trapezoidal rule applied to f on [a,b]. If f is twice continuously differen-
tiable on (a,b), then

[ sz~ omy () = - L= e

for some & € [a,b]. Note that because the error decreases as h?, that doubling the
number of points reduces the error by a factor of four.



3 Simpson’s Rule

More sophisticated quadrature rules can produce higher order error terms. Even more
popular than the trapezoidal rule is Simpson’s rule:

[ s~ 5 {r@ 4 (0) + 500}

Simpson’s rule can be derived by interpolating f(z) by a quadratic polynomial at a,
(a+b)/2 and b.

As with the trapezoidal rule, Simpson’s rule is usually applied to many short
intervals. Letting the z; be as above for n even and writing f; = f(z;), the composite
Simpson rule is
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If CSp(f) denotes the result of applying the composite Simpson rule to f over the
interval [a, b], and if f has continuous fourth derivative on (a,b), then

(b— a)f(4) (f)hzx
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where ¢ € [a,b]. Although Simpson’s rule was derived to integrate quadratic polyno-
mials exactly on each interval, the presence of the fourth derivative in the error term
signals that it in fact integrates cubics exactly as well. This property follows from
the fact that Simpson’s rule is a special case of Gaussian quadrature, treated below.

4 Newton-Cotes Formulas

The trapezoidal rule integrates any linear polynomial exactly. In general we might
look for an n+1 point rule which integrates exactly any polynomial of degree n. Such
a quadrature rule is the Newton-Cotes formula.

Let xg,x1,...,x, be distinct points in the interval [a,b]. We wish to determine
constants Ag, A1, ..., A, such that

[ 1@ = Ao o) + ...+ Aufn)

for any polynomial f of degree < n. This problem has an elegant solution in terms
of Lagrange polynomials. The ith Lagrange polynomial over the points xg,...,x, is
defined to be

0:(x) :M, i=0.1,....n
j= 0( l’j)
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are the unique coefficients giving the Newton-Cotes formula. Strictly speaking, as
Newton-Cotes usually refers to formulas with equally spaced abscissas, this is a slight
generalization.

Although the A; have an elegant analytic expression, they are difficult to evaluate
stably. For rules of low degree, one can use the method of undetermined coefficients.
We will illustrate the technique with a three-point formula over the interval [0, 1] on
the points 0, % and 1. The exactness property requires that the rule integrate any

function that is identically one. In other words
1
1'A0—|-1-A1—|-1-A2:/ ldz = 1.
0

The rule must also integrate the function x, which gives

1 1 1
0‘A0+7-A1+1-A2:/xda::f.
2 0 2

Finally, the rule must integrate the function z2, which gives

1 1 1
O-A0+*~A1+1~A2=/x2d.%'=*.
4 0 3

The solution of these three equations is

and

which is just Simpson’s rule.

5 Clenshaw-Curtis Integration

Newton-Cotes formulas with equally spaced abscissas are of practical use only for
small point numbers, say n < 8. For n as low as nine, the coefficients A; vary in sign.
As n increases, the coefficients become large in absolute value, leading to unstable
evaluation of the integral. This problem can be avoided by choosing the abscissas in
a more sophisticated way. One choice for which the coefficients are not only positive
but have stable analytic expressions is the Chebyshev points on [a, b],

b+a b-—a T
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Define the modified Fourier coefficients,
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where ” indicates that the first and last terms in the sum are to be halved. If n is

even, then the Clenshaw-Curtis formula can be written
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Like other formulas of the Newton-Cotes type, Clenshaw-Curtis will integrate
exactly polynomials of order n or less. In practice, it does rather better than other
rules of the same order, because of the bounded variation properties of Chebyshev
polynomials. The error of Clenshaw-Curtis integration can be estimated from the rate
of decrease of the coefficients a;. O’Hara and Smith [22] suggest the use of bounds
such as max(2|an—4|, 2|an—2|, |an|) for the approximation error.

6 Treatment of Singularities

Provided that the integrand f is sufficiently smooth, the Newton-Cotes formulas
converge as n — 0o. It sometimes happens however that one has to integrate a
function with a singularity. Suppose for example
c
)~ —
@)~
with 0 < d < 1 for x near zero. Then fol f(z)dz exists, but the Newton-Cotes
formulas will not obtain good results because f is not at all polynomial on [0, 1]. A
better approach is to incorporate the singularity into the quadrature rule itself.
First define

g(z) = 2f(x),

and look for a rule that evaluates the integral

/01 g(x)z "z

where g is a well-behaved function on [0,1]. The function z7¢ is called a weight
function. Given any modest number of points zg,...,z, in the interval (0, 1], the
method of undetermined coefficients can easily determine an integration rule of the
form

d
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by substituting in g(z) =1, g(x) = z, g(z) = 22 etc.

The appearance of derivatives in the error terms for Newton-Cotes rules (and for
the Gaussian rules below) shows that the method is troubled not only by singularities
in the integrand, but by singularities in its derivatives as well. A weight function
may therefore need to remove singularities in the derivatives as well as in the function
itself.



7 Gaussian Quadrature

A polynomial of degree n is determined by its n + 1 coefficients. We have seen that
the n + 1 coefficients Ag, ..., A, in the n + 1-point Newton-Cotes formula can be
chosen to make the rule exact for polynomials of degree n or less. The idea behind
Gaussian quadrature is that the abscissas xq, ..., x, represent another n + 1 degrees
of freedom, which may be used to extend the exactness of the rule to polynomials of
degree 2n + 1.

Gauss quadrature formulae have the form

/ab Fla)w(@)de ~ Aof(x0) + . - + Anf(zn),

where w(z) is a weight function which is greater than zero on the interval [a,b]. The
correct choice for xg, ..., x, turns out to be the zeros of an orthogonal polynomial of
order n + 1.

Two functions f and g are said to be orthogonal with respect to w(zx) on |[a, b] if

[ s@ateyy <o

For each interval and each appropriate weight function, there is a unique sequence
{pi}2y of polynomials with deg(p;) = ¢ such that each polynomial in the sequence
is orthogonal to all others. This sequence can be generated by a simple recurrence,
which is described in the article on polynomial interpolation®.

Let xg,...,x, be the zeros of the orthogonal polynomial p, 1. It can be shown
that the x; are real, simple, and lie in the interval [a, b]. Set

b
Ai:/ li(z)w(x)dx, i=0,...,n

where ¢; is the ith Lagrange polynomial over xg, ..., z,. For any function f let

Gnf =Aof(xo) +- -+ Anf(zp).
Then b
Cuf = [ f@u(e)de

for any polynomial f of degree less than or equal to 2n + 1.

An important point is that the coefficients A; are positive. Moreover, Ag + A1 +
et Ay = f:w(x)dx, so no coefficient can be larger than f; w(z)dx. Consequently
we cannot have a situation in which large coefficients create large intermediate results
that suffer cancellation when they are added.

Gaussian quadrature has error formulas similar to those for Newton-Cotes formu-
las. Specifically if f is 2n + 2 times continuously differentiable on (a,b), then

b (2n+2) b
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where £ € [a,b]. If f does not satisy the smoothness property then the accuracy of
Gaussian quadrature is generally reduced by at least an order of magnitude. However
a consequence of the positivity of the coefficients A; is that Gaussian quadrature
converges for any continuous function as n — co.

Particular Gauss formulas arise from particular choices of the interval [a,b] and
the weight function w(z). The workhorse is Gauss-Legendre quadrature in which
[a,b] = [—1,1] and w(z) = 1, so that the formula approximates the integral

/1 f(z)dx.

-1

The corresponding orthogonal polynomials are called Legendre polynomials.
If we take [a,b] = [0,00) and w(x) = e~ ¥, we get a formula to approximate

/Ooo f(z)e *du.

This is called Gauss-Laguerre quadrature.

If we take [a,b] = [—00,00] and w(z) =e™*

2, we get a formula to approximate

/_o:o f(:c)e_x2dx

This is Gauss-Hermite quadrature.

Computing the abscissas and coefficients for these and other Gauss rules in a stable
and efficient manner is a challenging nonlinear problem. Two successful algorithms
are those of Golub and Welsch [12] and Sack and Donovan [27]. A fortran program
implementing the Golub-Welsch method can be obtaining by searching the NETLIB*
database for caussqQ. The expense of computing the abscissas and coefficients is
sufficiently great that they are usually stored and re-used rather than generated afresh
for each problem.

Simpson’s rule is actually a variant of the Gauss-Legendre 3-point rule in which
xo and x, are constrained to be the end-points. Rules with such constraints are called
Gauss-Radau or Gauss-Lobatto quadrature [5].

8 Progressive Formula

Despite their optimal properties, the Gaussian formulas are not universally used in
practice. The main reason for this is the difficulty of determining in advance the
required number of points to achieve a given level of accuracy. In some cases, mathe-
matical analysis of the function to be integrated makes it possible to use the analytic
error bounds of the quadrature rules. It is more common however to estimate the error
empirically by applying the same quadrature rule twice with different point-numbers.
Often the point-number is doubled until the successive values of the integral agree to
the required number of figures.



A succession of integration formulas with increasing point-numbers is said to be
nested or progressive if each formula re-uses the abscissas of the earlier formulas.
The composite Simpson and Clenshaw-Curtis rules with n doubling at each step are
important examples of progressive formulas. Gaussian formulas are generally not
progressive, as the abscissas at any point-number are different from those for any
other point-number. The relative advantage of the Gauss formulas is therefore lost
in the expense of computing addition abscissas and function evaluations.

One possibility is to construct progressive formulas starting or finishing with a
Gaussian formula. Kronrod [18] gave a method for adding points to a Gauss-Legendre
formula in an optimal way. The Kronrod rule adds n + 1 points to a n-point Gauss-
Legendre formula, resulting in a rule which integrates exactly polynomials of order
3n+1 (neven) or 3n+2 (n odd). The desirable properties of Gaussian quadrature are
preserved in that the abscissas remain in the integration interval and the coefficients
A; remain positive. When the n-point Gauss rule is combined with its Kronrod
optimal extension, a very economical pair of formulas result for the simultaneous
calculation of an approximation for an integral and the respective error estimate.
The problem of extending arbitrary quadrature formulas in a progressive fashion was
studied by Patterson [23] [24] [17], who also gave a stable computation for the Kronrod
rules. Together, the Kronrod and Patterson methods provide a nested sequence of
quadrature rules based on an initial Gauss rule, and are the basis of some of the most
widely used integration programs.

9 Adaptive Methods

A quadrature rule is adaptive if it compensates for a difficult subrange of an inte-
grand by automatically increasing the number of quadrature points in the awkward
region. Adaptive strategies divide the integration interval into subintervals and, typ-
ically, employ a progressive formula in each subinterval with some fixed upper limit
on the number of points allowed. If the required accuracy is not achieved by the
progressive formula, then the subinterval is bisected and a similar procedure carried
out on each half. This subdivision process is carried out recursively until convergence
is achieved in each of the terminating subintervals. Most general purpose integration
programs are adaptive, since such a strategy can be successful over a very wide range
of integrands.

10 Multiple Integration: Product Rules

Multiple integration is concerned with the numerical approximation of integrals of
two or more variables. It is not a simple extension of one-dimensional integration.
The diversity of possible integration regions and singularities for d-dimensional func-
tions is daunting. As a general rule, it is not possible to obtain the same accuracy
with higher-dimensional integrals as with one-dimensional integrals for reasonable



computing times.
The problem addressed by multiple integration is to evaluate integrals of the form

bqg ba— 1(1‘4
[r= )
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bi(z1,...,zq)
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The most obvious approach is to treat the multiple integral as a nested sequence
of one-dimensional integrals, and to use one-dimensional quadrature with respect to
each argument in turn. The resulting multiple integration formula is a product rule.

Suppose that the integration region is a hyper-rectangle, so that the integration

interval [a;, b;] for z; in the above integral is independent of xji1,...,z4. If Gauss
quadrature is used to integrate f with respect to x;, with abscissas x;0,zj1,...,Zjn
and coefficients Ao, Aj1,..., Aj,, then the product rule is

/f ~ Z Avig Aty -+ Adig [ (T0ig, T1iys - - Taiy)-
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This rule integrates exactly any sum of monomials :E‘f‘:ng ...z}, where each o, 3,...,7y

is an integer between zero and 2n + 1, a result which derives directly from the corre-
sponding result for the one-dimensional Gauss rule.

The number of evaluations of f in the product rule is (n 4 1), which grows
exponentially with d. Rapid growth in the number of function evaluations usually
limits the practical use of product rules to around 5 or 6 dimensions. One special
case common in statistical applications is that in which x1, ..., x4 are exchangeable.
This arises when x1, ..., x4 is an independent sample from some distribution and f is
a function of the probability density. In that case only one evaluation of f is needed
for all points which are permutations of one another. The total number of evaluations
required is then ("Zd), which is considerably smaller than (n—i—l)d, so that calculations
for sample sizes up about 10 are manageable.

Despite the above limitations, Gauss product rules have been the basis of at least
one general approach to implementing Bayesian analysis methods, discussed in [20]
[29].

11 Rules of Polynomial Degree

As with quadrature, most cubature rules are designed to integrate a certain class of
polynomials exactly. A rule is said to be of polynomial degree r if it integrates exactly
any sum of monomials x’fl d with k1 + -+ 4+ kg < r. Although Gauss product
rules integrate certain monomlals of higher order, they do not integrate T 2n+2
and are therefore of polynomial degree 2n + 1.

exactly



By allowing rules that are not product rules, it is usually possible to find rules
which are more efficient than the product-Gauss rules in the sense of having polyno-
mial degree > 2n4-1 yet requiring fewer than (n-+1)? points. Methods for constructing
rules of prescribed polynomial degree are surveyed in [3]. For a compilation of such
rules see [31] and [4].

Polynomial rules of degrees five and seven on the hyper-rectangle serve as basic
integrating rules for the popular multiple integration program ADAPT [11], which is
described further below.

12 Globally Adaptive Algorithms

One dimensional adaptive programs usually consider each subinterval in turn, sub-
dividing each until a specified accuracy is obtained. This straightforward strategy is
called locally adaptive because the behavior of the algorithm in each local subinterval
depends only on the error estimates in that interval. However, for multiple integrals it
is often unknown at the beginning of the calculation whether the given accuracy can
be obtained in a reasonable amount of time. A popular adaptive strategy, originally
proposed by van Dooren and de Ridder [32], always subdivides the integration sub-
region with the largest error. Such a strategy is known as globally adaptive because
it makes subdivision decisions using information about all the current subregions.
Although globally adaptive algorithms require more memory space to maintain the
current subregion list and take more time to select subregions for subdivision, at each
stage in the calculation the global estimate for [ f is in some sense the best one
available using the computation that has been done so far.

The globally adaptive program ADAPT [11] and its successor DCUHRE [1] [2] build
on the work of van Dooren and de Ridder [32]. ADAPT uses the difference between
nested pair of polynomial rules, of degrees seven and five respectively, to estimate the
error in each subregion. Some of the degree seven integrand values are also used to
compute fourth differences in directions parallel to each of the coordinate axes. When
a subregion is selected for subdivision, it is divided in half in the direction of largest
absolute fourth difference. This clever strategy for halving in only one direction,
using fourth differences to measure integrand irregularity, is probably one of the main
reasons for the practical effectiveness of the algorithm. The later program DCUHRE
gives the user a choice of integration rules, uses a more sophisticated error estimate,
and is organized to facilitate parallel integration of a vector of related integrands.

13 Lattice Methods

Lattice rules were originally called “number theoretic” or “quasi-random” methods
[31]. The integration region is translated to the unit cube, and the integral approxi-
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mated by a multiple sum of the form
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where z1,...,2z; are carefully selected integer vectors. This is the simple unweighted
mean of the integrand evaluated over a regular lattice of abscissas in the unit cube.
For the method to work well, the integrand must be transformed to be periodic in
the cube so that its Fourier coefficients go to zero rapidly.

A lattice method originated by Korobov [16] and extended by Patterson and
Cranley [25] is implemented in the NAG library* routines DO1GCF and DO1GDF.
Lattice methods are not yet in widespread use, but there is some evidence [10] [28]
that they can outperform other available methods when the number of dimensions is
between about 10 to 20.

14 Monte Carlo Methods

The idea of estimating an integral by random sampling is a natural one in a statistical
context. In the classical Monte Carlo method [19] [13] points x1,...,X, are chosen
randomly in the integration region and the integral is estimated by

where V' is the volume of the integration region. Convergence is guaranteed almost
surely by the central limit theorem under very weak conditions on f. Moreover,
the rate of convergence is independent of the dimensionality. The error f — [ f is
approximately normal with mean zero and standard deviation

o)y,

n
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is the variance of f. Finally, and most importantly, a free estimate of the error is
available as o%(f) may be estimated by the sample variance of f(x1),..., f(x).

The slow n~ /2 rate of convergence means that Monte Carlo methods are usually
limited to low accuracy, say three significant figures. However this accuracy can be
achieved with comparable work for any number of dimensions and for a very wide
range of integration regions. In many statistical applications higher accuracy is not
required; computational error need only be small relative to the inherent statistical
uncertainty that enters the process of drawing inferences from data.

where

11



Practical use of the Monte Carlo method depends on techniques for reducing the
o?(f) variance term in the error. Central amongst these is importance sampling, in
which x1,...,x, are sampled from a distribution which is as much like f in shape as
possible. This has the effect of sampling most densely in those parts of the integration
region where the integrand is greatest. Specifically, write the integral as

| Fx)g(x)ax.

where g is a density function on the integration region, and f is as close to a con-

stant function as possible. Points x1,...,x, are sampled from g, and the integral is
approximated as before by f. The standard deviation of f is now
Ug(f )

vn

oo (f) :/fzg— (/fg>2

is the variance of f with respect to the density g.
In Bayesian problems the aim is to approximate posterior means of the form

_ Jfx)g(x)dx
PO = gt

where g(x) is the un-normalized posterior density of x, and f(x) is some quantity of
interest. If sampling is available from a suitable sampling density h, which is hopefully
a good approximation to the posterior, then the posterior mean can be approximated
by

where

where w is the weight function

w(x) = g(x)/h(x).

It can be easily shown that f is approximately normal with mean E(f) and standard
deviation o/y/n where

0% = El{g — B(g)}*u]

and all expectations are taken with respect to the posterior distribution.

Other variance reduction techniques include stratified sampling and antithetic ac-
celeration. Antithetic acceleration involves generating pairs of identically distributed
but negatively correlated points x} and x?. This tends to produce negatively corre-
lated terms in the sum; the more negative the correlation the lower the variance of
the sum. See [5], [13], [15] or [8] for references to variance reduction methods.

12



The NAG library subroutine DO1GBF uses an adaptive Monte Carlo algorithm to
integrate over a hyper-rectangle. The number of subregions is doubled at each itera-
tion, and in each the integral and variance are estimated by Monte Carlo sampling.
Algorithms also exist which are adaptive in terms of the importance sampling density.
Such algorithms refine the importance sampling density adaptively so as to minimize
o2 during the Monte Carlo process [5] [21].

15 Conclusions

If a large number of well behaved one-dimensional integrands are to be integrated,
and the user is willing to do some analytic analysis to obtain efficiency, then it is hard
to go past the classical Gauss quadrature methods. More usually though users will
choose to use an automatic integration program of some kind, using computer time
to save their own time and to gain reliability.

Reliable and well-documented software for numerical integration can be found
by searching the NIST GAMS online catalogue at http://gams.nist.gov under class
“h2”. See [14] for brief reviews of much of this software. It is also worth searching
the STATLIB* database for statistical functions based on these routines.

In one and two dimensions there is a wealth of reliable and effective programs. The
leading one-dimensional package currently is QUADPACK by Piessen et al [26]. This
is available from the NETLIB* database and is cross classified by GaAMs. It has also
been incorporated into the NAG*, IMSL* and SLATEC subroutine libraries. QUADPACK
provides a suite of programs designed for different types of difficulties such as singu-
larities and oscillatory integrands, and includes a decision tree to guide the user in
choosing the appropriate routine. The program QAGS is a particularly robust general
purpose integration program, as is the non-QUADPACK program CADRE [6] which is
included in the iMSL* library. In statistical applications, however, the integrands are
often smooth with a single dominant peak, so the more efficient programs QNG and
QAG, which use higher order Gauss, Gauss-Kronrod and Patterson rules, may suffice.

InR (http://www.r-project.org), the stats package provides the function integ-
rate, based on QUADPACK routines dqags and dqagi from Netlib. The R packages stat-
mod, gaussquad and mvQuad, available from CRAN (http://cran.r-project.org),
provide functions for Gauss quadrature. The statmod package in particular imple-
ments the algorithm of Golub and Welsch [12].

So far there is no reliable suite of programs for multiple integration. Up to 10 or
perhaps 15 dimensions, globally adaptive routines such as ADAPT and DCUHRE can
be recommended. When the number of dimensions exceeds about 20, Monte Carlo
methods are the only ones possible. Mark 20 of the NAG* library includes ten multiple
integration programs, including one which implements a Monte Carlo method.
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