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Abstract

Polynomials are very simple mathematical functions which have the flexibility
to represent very general nonlinear relationships. Approximation of more com-
plicated functions by polynomials is a basic building block for many numerical
techniques. This article considers two distinct but related applications. The
first is polynomial regression in which polynomials are used to model a nonlin-
ear relationship between a response variable and an explanatory variable. The
advantages of using orthogonal polynomials as predictor variables are illustrated
using a data set on the height and age of pre-adult girls. The second problem
is that of approximating a difficult to evaluate function, such as a density or a
distribution function, with the aim of fast evaluation on a computer. The use
of Chebychev polynomials is illustrated for the purpose of obtaining a uniformly
accurate approximation to a function over a finite interval.

Keywords: polynomial regression, orthogonal polynomials, Legendre polynomi-
als, Chebyshev polynomials, Laguerre polynomials, Hermite polynomials, Cheby-
shev interpolation.

1 Introduction

A polynomial is a function which can be written in the form

p(x) = c0 + c1x+ · · ·+ cnx
n

for some coefficients c0, . . . , cn. If cn 6= 0, then the polynomial is said to be of order n.
A first order (linear) polynomial is just the equation of a straight line, while a second
order (quadratic) polynomial describes a parabola.

Polynomials are just about the simplest mathematical functions that exist, re-
quiring only multiplications and additions for their evaluation. Yet they also have
the flexibility to represent very general nonlinear relationships. Approximation of
more complicated functions by polynomials is a basic building block for a great many
numerical techniques.
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There are two distinct purposes to which polynomial approximation is put in
statistics. The first is to model a nonlinear relationship between a response variable
and an explanatory variable. The response is usually measured with error, and the
interest is on the shape of the fitted curved and perhaps also on the fitted polynomial
coefficients. The demands of parsimony and interpretability ensure that one will
seldom be interested in polynomial curves of more than 3rd or 4th order in this
context.

The second purpose is to approximate a difficult to evaluate function, such as a
density or a distribution function, with the aim of fast evaluation on a computer.
Here there is no interest in the polynomial curve itself. Rather the interest is on how
closely the polynomial can follow the special function, and especially on how small the
maximum error can be made. Very high order polynomials may be used here if they
provide accurate approximations. Very often a function is not approximated directly,
but is first transformed or standardized so to make it more amenable to polynomial
approximation.

On either type of problem, substantial benefit can be had from orthogonal poly-
nomials. Orthogonal polynomials can be used to make the polynomial coefficients
uncorrelated, to minimize the error of approximation, and to minimize the sensitivity
of calculations to round-off error.

Suppose that the function to be approximated, f(x), is observed at a series of
values x1, . . . , xN . In general we will observe yi = f(xi)+εi where the εi are unknown
errors. The task is to estimate f(x) for new values of x. If the new x is within the
range of the observed absissae then the problem is interpolation. If it is outside, then
the problem is extrapolation. Polynomials are useful for interpolation, but notoriously
poor at extrapolation.

Polynomial approximation is relatively straightforward and good enough for many
purposes. There are, however, many other ways to approximate functions. Many
functions, for example, can be more economically approximated by rational functions,
which are quotients of polynomials. A survey of approximation methods is given by
Press et al [4, Chapter 4].

Most numerical analysis texts include a treatment of polynomial approximation.
Atkinson [2, Chapter 4] gives a nice treatment of minimax approximation using
Chebyshev polynomials. Many specific polynomial approximation formulae to func-
tions used by statisticians are given by Abramowitz and Stegun [1]. Many statistical
texts mention polynomial regression. Kleinbaum [3, Chapter 13] gives a very accessi-
ble treatment, while that of Seber [5, Chapter 8] is more detailed and mathematical.

2 Taylor’s Theorem

Use of polynomials can be motivated by Taylor’s theorem. A well-behaved function
f can be approximated about a point x by

f(x+ δ) ≈ f(x) + f ′(x)δ + f ′′(x)
δ2

2!
+ · · ·
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Figure 1: The cubic Taylor series approximation to ex is accurate only near zero. The cubic
Chebyshev polynomial approximation is indistinguishable from the function itself.

The right-hand size, which is a polynomial in δ, is an accurate approximation provided
δ is small.

The trouble with Taylor’s theorem is that the error of approximation is not evenly
distributed. The approximation is accurate for x near zero but becomes poor for
larger values of x. Consider the cubic Taylor series expansion for ex about zero on
the interval [0, 3] (Figure 1). The approximation is accurate in a neighborhood of
zero, but is very poor at the ends of the interval. Meanwhile there are other cubic
polynomials which follow ex with good accuracy over the entire interval. The holy
Grail of polynomial approximation is to the find the polynomial which minimizes the
maximum deviation of the polynomial from the function over the entire interval, the
so-called minimax polynomial.

3 Orthogonal Polynomials

The general polynomial p(x) above was written in terms of the monomials xj . This
is known as the natural form of the polynomial. The trouble with the natural form is
that the monomials all look very similar when plotted on [0, 1], i.e., they are a very
highly correlated. This means small changes in p(x) may arise from relatively large
changes in the coefficients c0, . . . , cn. The coefficients are not well determined when
there is measurement or round-off error.
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The general polynomial can just as well be written in terms of any sequence of
basic polynomials of increasing degree,

p(x) = a0p0(x) + a1p1(x) + . . .+ anpn(x)

where the degree of pj(x) is j for j = 0, . . . , n. There is a linear relationship between
the original coefficients cj and the new coefficients aj to make the resulting polynomial
the same in each case.

The idea behind orthogonal polynomials is to select the basic polynomials pj(x)
to be as different from each other as possible. Two polynomials pi and pj are said to
be orthogonal if pi(X) and pj(X) are uncorrelated as X varies over some distribution.
Legendre polynomials are uncorrelated when X is uniform on (−1, 1). Chebyshev
polynomials are uncorrelated when X is Beta(12 ,

1
2) on (−1, 1). Laguerre polynomials

are uncorrelated when X is gamma on (0,∞). Hermite polynomials are uncorrelated
when X is standard normal on (−∞,∞).

Any sequence of orthogonal polynomials can be calculated recursively using a
three-term recurrence formula. For example, the Chebyshev polynomials satisfy

p0(x) = 1

p1(x) = x

p2(x) = 2x2 − 1

· · ·
pn+1(x) = 2xpn(x)− pn−1(x) n ≥ 1

Another important property of orthogonal polynomials is that pn(x) changes sign (and
has a zero) n times in the interval of interest. The zeros of the nth order Chebyshev
polynomial occur at

xk = cos

(
π
k − 0.5

n

)
, k = 1, . . . , n

The Chebyshev polynomials also have the property of bounded variation. The
local maxima and minima of Chebyshev polynomials on [−1, 1] are exactly equal to 1
and−1 respectively, regardless of the order of the polynomial. It is this property which
makes them valuable for minimax approximation. In fact, an excellent approximation
to the nth order minimax polynomial on an interval can be obtained by finding
the polynomial which satisfies pn(x) = f(x) at the zeros of the (n + 1)th order
Chebyshev polynomial. Figure 1 shows the use of a 3rd order Chebyshev polynomial
to approximate the function exp(x) on the interval [0, 3]. The error is less than 0.18
over the whole interval.

As another example, consider the problem of approximating the tail probabil-
ity of the normal probability distribution function, 1 − Φ(x), for x > 0. Since the
tail probability decreases rapidly as x increases, we consider the ratio of the tail
probability to the normal density function [1 − Φ(x)]/φ(x). Finally, we transform
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Figure 2: Height (inches) versus age (in years) for 318 girls who were seen in the Childhood
Respiratory Disease Study in East Boston, Massachusetts.

x to y = (x − 1)/(x + 1) which takes values on [−1, 1]. The resulting function
f(y) = [1− Φ(x(y))]/φ(x(y)) looks nearly linear and can be well approximated by a
polynomial. The tenth-order polynomial which interpolates f(y) on the Chebyshev
points on [−1, 1] approximates f(y) to nine or more significant figures, and hence
gives an approximation to Φ(x) which remains accurate to ten significant figures for
very large values of x.

4 Polynomial Regression

Now we turn to the case in which the nonlinear function is observed with error.
Suppose that we observe (xi, yi), i = 1, . . . , N , where

yi = f(xi) + εi

where f is some nonlinear function and the εi are uncorrelated with mean zero and
constant variance.

Consider height as a function of age for 318 girls who were seen in a disease study
[6] in East Boston in 1980 (Figure 2). Height might be described roughly by a straight
line over a short range of ages, say ages 5 to 10, but over wider age ranges a more
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Table 1: Coefficients and standard errors for polynomial regression of Height on Age for the
respiratory disease study.

Coefficient Value Std. Error t-value P -value
β0 80.2384 32.9342 2.4363 0.0154
β1 -26.9075 23.0292 -1.1684 0.2435
β2 7.8563 6.3456 1.2381 0.2166
β3 -1.0296 0.8856 -1.1627 0.2459
β4 0.0712 0.0663 1.0737 0.2838
β5 -0.0025 0.0025 -1.0020 0.3171
β6 0.0000 0.0000 0.9503 0.3427

Table 2: Correlation matrix for the polynomial regression coefficients.

β0 β1 β2 β3 β4 β5
β1 -0.9935
β2 0.9774 -0.9950
β3 -0.9558 0.9824 -0.9960
β4 0.9313 -0.9650 0.9860 -0.9969
β5 -0.9058 0.9451 -0.9721 0.9888 -0.9975
β6 0.8805 -0.9241 0.9559 -0.9776 0.9910 -0.9980

general function is needed. We fit initially a sixth order polynomial,

yi = β0 + β1xi + β2x
2
i + β3x

3
i + β4x

4
i + β5x

5
i + β6x

6
i + εi

with the intention of decreasing the order later if a simpler polynomial is found to
fit just as well. This leads to a multiple linear regression problem for the coefficients
β0, . . . , β6 in which the design matrix is

X =


1 x1 x21 . . . x61
1 x2 x22 . . . x62
...

...
...

...
...

1 x318 x2318 . . . x6318


The columns of this matrix are very nearly collinear, which will make the least squares
problem ill-conditioned. Nevertheless we can obtain results from a statistical package:
the regression overall is highly significant with an F -statistic of 135.7 on 6 and 311
df. However the table of coefficients and standard errors offers little guidance as to
what order of polynomial is required (Table 1). None of the regression coefficients
are significantly different from zero, a reflection of the high correlations between
the coefficients (Table 2. We could determine the smallest adequate order for the
polynomial by fitting, in turn, a 5th-order polynomial, a 4th order, a 3rd-order and
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Table 3: Coefficients and standard errors for orthogonal polynomial regression of Height on
Age for the respiratory disease study.

Coefficient Value Std. Error t-value P -value
α0 60.2119 0.1426 422.1543 0.0000
α1 65.0285 2.5435 25.5669 0.0000
α2 -31.3549 2.5435 -12.3276 0.0000
α3 4.4838 2.5435 1.7629 0.0789
α4 4.9562 2.5435 1.9486 0.0522
α5 -2.1465 2.5435 -0.8439 0.3994
α6 2.4170 2.5435 0.9503 0.3427

so on. At each step we could test for the neglected monomial term using an adjusted
F -statistic. A more satisfactory solution however is to use orthogonal polynomials.

Many statistical programs allow one to compute a sequence of polynomials which
are orthogonal with respect to the observed values of x, i.e., which satisfy

N∑
k=1

pi(xk)pj(xk) = 0, i 6= j.

(The function ORPOL is part of PROC MATRIX or PROC IML in SAS. In S-Plus
or R the function is poly.) It is also convenient to choose the polynomials so that

N∑
k=1

pi(xk)2 = 1, i = 0, 1, . . . , N − 1

In terms of these polynomials, the multiple regression model becomes

yi = α0p0(xi) + α1p1(xi) + · · ·+ α6p6(xi) + εi

where again there is a linear relationship between the coefficients αj of the orthogonal
polynomials and the original βj . This model has the same fitted values, sums of
squares and F -ratio as the original model. However, because of orthogonality, the least
squares estimates of the αj are uncorrelated and have identical standard errors, which
greatly simplifies interpretation. In fact each estimated coefficient α̂j is unchanged
by the actual order of the polynomial which has been fit.

Table 3 gives the estimated coefficients and standard errors for the orthogonal
polynomial regression. In this case the t-statistics and P -values for the coefficients
directly relate to the significance of cubic, quartic, and so on, components of the
regression. We can see that the 5th and 6th order terms are not required, but that
the 3rd and 4th order terms are approaching significance. A plot of the quadratic
and quartic fitted values against Age shows that the quartic fit might be preferred
because the quadratic is not monotonic in the observed range (Figure 2).
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