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Abstract

RNA sequencing (RNA-seq) is widely used to profile transcriptional activity in bio-
logical systems. Here we present an analysis pipeline for differential expression analysis
of RNA-seq experiments using the Rsubread and edgeR software packages. The basic
pipeline includes read alignment and counting, filtering and normalization, modelling
of biological variability and hypothesis testing. For hypothesis testing, we describe
particularly the quasi-likelihood features of edgeR. Some more advanced downstream
analysis steps are also covered, including complex comparisons, gene ontology enrich-
ment analyses and gene set testing. The code required to run each step is described,
along with an outline of the underlying theory. The chapter includes a case study in
which the pipeline is used to study the expression profiles of mammary gland cells in
virgin, pregnant and lactating mice.

1 Introduction

RNA sequencing (RNA-seq) is widely used to profile transcriptional activity in biological
systems, superseding microarrays as the technique of choice for profiling gene expression
[1, 2, 3]. One of the most common aims of RNA-seq profiling is to identify genes or
molecular pathways that are differentially expressed (DE) between two or more biological
conditions. Changes in expression can then be associated with differences in biology,
providing avenues for further investigation into potential mechanisms of action.

This article describes an analysis pipeline for the detection of DE genes and pathways
from RNA-seq data using the Rsubread and edgeR software packages [4, 5. We will
assume throughout that RNA samples have been extracted from cells of interest under
two or more treatment conditions, and that there are independent biological replicates
for at least one of the treatment conditions. We assume that RNA-seq profiling has



been applied to each RNA sample and that the pipeline takes the raw sequence reads as
input. The analysis strategy we describe can be applied to any RNA-seq gene expression
experiment, but we give give particular attention to experiments with multiple treatment
factors and with small numbers of biological replicates.

The pipeline uses the Rsubread package for mapping reads and assigning them to
genes, and the edgeR package for statistical analyses. Generalized linear models are used
to accommodate complex experimental designs [6]. Quasi-likelihood F-tests are used to
conduct hypothesis tests [7]. edgeR provides a range of capabilities. We focus here on the
quasi-likelihood features of edgeR rather than exact tests [8, 9] or likelihood ratio tests [6],
because the latter have been described previously [10] and because the quasi-likelihood
functions provide more robust and reliable error rate control when the number of replicates
is small.

The use of the pipeline is demonstrated here with a published RNA-seq data set
involving the mouse mammary gland [11]. edgeR, Rsubread and other packages used
in this article are publicly available as part of the Bioconductor project [12]. See http:
//www.bioconductor.org/install for installation instructions.

2 Basic theory of the differential expression analysis

2.1 Overview

Before we start on the computational aspects of the analysis, it is useful to give an outline
of the underlying theory. The next few sections describe the approach taken to process
the reads into gene counts and to normalize the counts for library-specific biases. We also
give a brief introduction to the statistical models used to represent complex designs, to
estimate technical and biological variability and to conduct hypothesis tests.

2.2 From reads to genewise counts

Massively parallel sequencing generates millions of short read sequences from each RNA
sample. We will refer to the set of reads produced from a particular sample as a library.
The first step in processing the data is to align each read to the reference genome for the
organism being studied. This can be done efficiently with a splice-aware aligner such as
TopHat [13] or subread [4]. We use subread in this tutorial because it is especially fast
and convenient, as well as being available as an R package.

The next step is to assign reads to genes. The number of reads overlapping the exons
of a gene can be used as a measure of the expression level of that gene. featureCounts [14]
and HTSeq [15] are popular tools for counting the reads assigned to each gene. We use
featureCounts in this tutoral because it is fast and available in the Rsubread package.

This process produces a read count for each gene in each sample. An example of
the read counts for a simple RNA-seq experiment is shown in Table 1. Two groups are
present in the data set (wild-type and mutant), each of which contains samples from two
mice, i.e., two biological replicates. After sequencing, reads for each sample are mapped



Table 1: Table of read counts for a simple RNA-seq experiment with four samples. Each column
corresponds to a sample from a mouse with a wild-type or mutant genotype. Each row corresponds
to a gene in the mouse genome. Each entry represents the read count for a gene in a sample.

Wild-type Mutant
Sample 1 Sample 2 ~ Sample 3 Sample 4
Gene 1 24 31 76 59
Gene 2 0 3 7 2
Gene 3 1988 1125 3052 2450
Gene 4 5 0 0 1

to the mouse genome and summarized into gene-level counts. The final expression profile
is represented by a matrix of read counts, with one row for each of the thousands of genes
and one column per sample.

Counting reads by genes is far from the only method for RNA-seq data summarization
that is available. An alternative would be to obtain a read count for each exon in each
sample, in order to investigate isoform levels. Another approach might be to assemble
transcripts de novo from the read sequences, and then count the number of reads aligned to
each new transcript. We recommend the gene counting approach, however, as it is simple
and effective when identification of DE genes is desired, especially when the sequencing
depths are not very high.

2.3 Modelling variability in a quasi negative binomial framework

edgeR uses the negative binomial (NB) distribution to model the read counts for each
gene in each sample [9, 8]. The NB disribution is ideal as it is a discrete count distribution
that provides accurate modelling at low counts. It can account for variability between
biological replicates, through the NB dispersion parameter [6]. The NB model can also
be extended with quasi-likelihood (QL) methods to account for gene-specific variability
from both biological and technical sources [7]. Write y4; for the read count for gene g in
sample ¢, and let E(y4) = pgi be the expected count for this gene in this sample given
the sequencing depth and treatment conditions applied to sample . The variance of the
count is a quadratic function of the mean,

Var(ygi) = 03 (Ngi + H§z¢)

where ¢ is the NB dispersion parameter and Jg is the QL dispersion parameter.

Any increase in the observed variance of y, will be modelled by an increase in the
estimates for ¢ and/or 03. In this model, the NB dispersion ¢ is a global parameter
whereas the QL is gene-specific, so the two dispersion parameters have different roles.
The NB dispersion describes the overall biological variability across all genes. The square-

root of the NB dispersion is known as the biological coefficient of variation [6]. It represents



the observed variation that is attributable to inherent variability in the biological system,
in contrast to the Poisson variation from sequencing. The QL dispersion picks up any
gene-specific variability above and below the overall level.

A common NB dispersion for the entire data set can be stably estimated by using in-
formation across all genes. In practice, a more flexible approach is to fit a mean-dispersion
trend across genes. In this approach, ¢ is replaced by a function ¢(A), where A is a mea-
sure of the overall expression level of gene g. Then ¢(A) is referred to as the trended NB
dispersion for that gene [6]. This approach accounts for empirical mean-variance relation-
ships, e.g., from distributions other than the NB. Trend fitting is also stabilized by sharing
information between genes with similar abundances.

Estimation of the gene-specific QL dispersion is difficult as most RNA-seq data sets
have limited numbers of replicates. This means that there is often little information to
stably estimate the dispersion for each gene. To overcome this, an empirical Bayes (EB)
approach is used whereby information is shared between genes [16, 7, 17]. Briefly, a mean-
dependent trend is fitted to the raw QL dispersion estimates. The raw estimates are then
squeezed towards this trend to obtain moderated EB estimates, which can be used in
place of the raw values for downstream hypothesis testing. This EB strategy reduces the
uncertainty of the estimates and improves testing power.

2.4 Introducing the generalized linear model

edgeR uses the generalized linear model (GLM) framework to account for complex exper-
imental designs [6]. The mean count for gene g in sample 7 is modelled as

log(ttgi) = xi1Bg1 + Ti2Bg2 + - - . + Tinfgn + 0i

where f4; is the gene-specific value of coefficient j, x;; is the sample-specific predictor
for j, and o; is the sample-specific offset. There are n coefficients in total, where each
coefficient should describe some factor of the experimental design, e.g., different biological
conditions, batch effects. The predictors can be binary or continuous, though we will focus
on binary values for simplicity. Setting z;; = 1 indicates that coefficient j contributes
to the expression of sample i, i.e., the factor of the design corresponding to j affects
this sample. Finally, the value of 3,; describes the impact of that design factor on the
expression of gene ¢ in affected samples.

For example, consider a design with three groups 1, 2 and 3. One way to choose the
predictor variables x;; is as indicator variables for each treatment group (Table 2). With
this choice of design matrix, the coefficient 34; represents the log-average expression level
of gene g across the libraries in group j.

Another popular way to choose the predictor variables is to make the first coefficient
Bg1 an intercept term (Table 3). With this choice of predictor variables, the coefficients
Bg2 and B3 represent log-fold expression changes for gene g between group 1 and the other
two groups. Choosing between the different parametrizations of the predictor variables is
a matter of convenience, as they lead to equivalent fitted models and the same downstream
differential expression results.



Table 2: Group-mean design matrix. This is displayed as a table of predictor values z;; for
each coeflicient j in each sample ¢, for an experimental design containing groups 1, 2 and 3.
Each group has two replicate samples. This choice of predictor variables is called the group-mean
parametrization. Each of the three estimated coefficients represents the log-expression level (i.e.,
log-count-per-million) of the gene in the corresponding treatment group.

Coefficients

Group Sample j=1 j7=2 j=3

1 i=1 1 0 0
1 1=2 1 0 0
2 1=3 0 1 0
2 i1 =4 0 1 0
3 1=25 0 0 1
3 1=26 0 0 1

Table 3: Design matrix with a reference level. This is displayed as a table of predictor values z;;
for each coefficient j in each sample ¢, for an experimental design containing groups 1, 2 and 3.
Each group has two replicate samples. This choice of predictor variables treats the first treatment
group as a reference. The first coeflicient 341 represents log-expression of the gene in the first
treatment group, while 342 and 343 represent the log-fold-changes in expression for the second and
third treatment groups, respectively, compared to the first.

Coefficients

Group Sample j=1 j=2 j=3

1 1=1 1 0 0
1 =2 1 0 0
2 1=3 1 1 0
2 1 =4 1 1 0
3 1=25 1 0 1
3 1 =206 1 0 1




Finally, the offset term is defined as the log-transformed library size. The library
size refers to the total number of reads across all genes in each library, and depends on
the amount of sequencing resources spent in characterizing each sample. Consider two
samples ¢ = 1 and 2, where the library size for ¢ = 1 is twice that of 2. This means
that the expected count pg41 will be twice as large as pg2 for some gene g with the same
expression in both samples. The offsets ensure that the differences in library size do not
contribute to spurious differences in expression, i.e.,

log(pg1) — o1 = log(jg2) — 02 .

Note that it is possible to construct more complex parametrizations involving gene- and
sample-specific offsets. For simplicity, these will not be described here.

2.5 Normalizing for composition biases

Consider two samples A and B that are sequenced to the same “depth”, i.e., the resulting
libraries have the same number of reads. Assume that all genes are expressed at the same
level in the two samples, except for one DE gene that increases in B. The DE gene will
use up more sequencing resources in B, such that fewer reads will be available for all other
non-DE genes. This results in “composition bias” where the read counts for the non-DE
genes are suppressed in library B [18]. Spurious differences will then be observed upon
comparison to the counts in library A.

Composition bias can be eliminated with trimmed mean of M-values (TMM) normal-
ization. Briefly, most genes are assumed to be non-DE between libraries A and B. If this
is true, any systematic difference in the gene counts between the two libraries must repre-
sent composition bias. The log-fold difference of the counts in B over A is estimated from
the data and used to compute a scaling factor, also known as the TMM normalization
factor. This factor is used to scale the size of library B to obtain an “effective” size, used
to compute the GLM offset for B. More intuitively, this is equivalent to scaling the counts
in library B upwards by the reciprocal of the estimated factor. This reverses the effect of
suppression in B.

3 Tutorial with real data

3.1 Description of the data set

To demonstrate how the differential expression analysis works, we will use RNA-seq data
from the Fu et al. study [11]. The sequence and count data are publicly available from
the Gene Expression Omnibus (GEO) at the series accession number GSE60450. This
study examines the expression profiles of basal stem-cell enriched cells (B) and committed
luminal cells (L) in the mammary gland of virgin, pregnant and lactating mice. Six
groups are present, with one for each combination of cell type and mouse status. Each
group contains two biological replicates. This is summarized in the table below, where the
basal and luminal cell types are abbreviated with B and L respectively.
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targets
FileName GEOAccession CellType Status
SRR1552450.fastq  GSM1480297 B  virgin
SRR15652451.fastq  GSM1480298 B virgin
SRR1552452.fastq  GSM1480299 B pregnant
SRR1552453.fastq  GSM1480300 B pregnant
SRR1552454 .fastq  GSM1480301 B lactate
SRR1552455.fastq  GSM1480302 B lactate
SRR1552444 .fastq  GSM1480291 L virgin
SRR1552445.fastq  GSM1480292 L virgin
SRR1552446.fastq  GSM1480293 L pregnant
10 SRR1552447.fastq GSM1480294 L pregnant
11 SRR1552448.fastq  GSM1480295 L lactate
12 SRR1552449.fastq  GSM1480296 L lactate
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The name of the file containing the read sequences for each library is also shown. Each
file is downloaded from the Sequence Read Archive and has an accession number starting
with SRR, e.g., SRR1552450 for the first library in targets. All files have been converted
to the FASTQ format - see Section 3.2 for more details.

The experimental design for this study can be parametrized with a one-way layout,
whereby one coefficient is assigned to each group. The design matrix contains the pre-
dictors for each sample and and is constructed using the code below. Each row of this
design matrix corresponds to a sample in targets. Each column represents a coefficient
that corresponds to the group after which it is named. This is effectively an extension of
the three-group example described in Table 2.

> group <- factor(pasteO(targets$CellType, ".", targets$Status))
> design <- model.matrix(~ 0 + group)
> colnames(design) <- levels(group)

> design

B.lactate B.pregnant B.virgin L.lactate L.pregnant L.virgin
1 0 0 1 0 0 0
2 0 0 1 0 0 0
3 0 1 0 0 0 0
4 0 1 0 0 0 0
5 1 0 0 0 0 0
6 1 0 0 0 0 0
7 0 0 0 0 0 1
8 0 0 0 0 0 1
9 0 0 0 0 1 0
10 0 0 0 0 1 0
11 0 0 0 1 0 0
12 0 0 0 1 0 0

attr(,"assign")

(1] 111111
attr(,"contrasts")
attr(,"contrasts")$group
[1] "contr.treatment"



3.2 Read alignment and processing

Read sequences are stored in FASTQ files. Before the differential expression analysis can
proceed, these reads must be aligned to the mouse genome and counted into annotated
genes. This can be achieved with functions in the Rsubread package. We assume that an
index of the mouse genome is already available - if not, this can be constructed from a
FASTA file of the genome sequence with the buildindex command. In this example, we
assume that the prefix for the index files is mm10. The reads in each FASTQ file are then
aligned to the mouse genome, as shown below.

> library(Rsubread)

> output.files <- sub(".fastq", ".bam", targets$FileName)

>

+

align("mm10", readfilel=targets$FileName, phredOffset=33,
input_format="FASTQ", output_file=output.files)

This produces a set of BAM files, where each file contains the read alignments for each
library. The mapped reads can be counted into mouse genes by using the featureCounts
function. The code below uses the exon intervals defined in the NCBI annotation of the
mm10 genome. Recall that counts for all exons of a gene are added together to obtain the
count for each gene. Repeating this for every sample generates a matrix of read counts
for each gene in each sample, similar to Table 1.

> fc <- featureCounts(output.files, annot.inbuilt="mm10")
> colnames (fc$counts) <- 1:12
> head(fc$counts)

i 2 3 4 5 6 7 8 9 10 11 12
497097 438 300 65237354287 O O O O O O
100503874 1 0 1 i 0 4 0 O O O o0 o0
100038431 o0 o0 O O O O O O O o o0 o
19888 1 i 0 o0 o o0 10 3 10 2 0 O
20671 106 182 82 105 43 82 16 256 18 8 3 10
27395 309 234 337 300 290 270 560 464 489 328 307 342

The row names of the matrix represent the Entrez gene identifiers for each gene. In the
output from featureCounts, the column names of fc$counts are the output file names
from align. Here, we simplify them for brevity.

Notes

e Sequence data from GEO is normally obtained in the Sequence Read Archive (SRA)
format. Prior to read alignment, these files should be converted into the FASTQ
format using the fastq-dump utility from the SRA Toolkit. See http://www.ncbi.
nlm.nih.gov/books/NBK158900 for how to download and use the SRA Toolkit.

e By default, alignment is performed with unique=TRUE. If a read can be aligned to two
or more locations, Rsubread will attempt to select the best location using a number
of criteria. Only reads that have a unique best location are reported as being aligned.
Keeping this default is recommended, as it avoids spurious signal from non-uniquely
mapped reads derived from, e.g., repeat regions.



e The Phred offset determines the encoding for the base-calling quality string in the
FASTQ file. For the Illumina 1.8 format onwards, this encoding is set at +33.
However, older formats may use a +64 encoding. Users should ensure that the
correct encoding is specified during alignment. If unsure, one can examine the first
several quality strings in the FASTQ file. A good rule of thumb is to check whether
lower-case letters are present (+64 encoding) or absent (433).

e featureCounts requires gene annotation specifying the genomic start and end po-
sition of each exon of each gene. Rsubread contains built-in gene annotation for
mouse and human. For other species, users will need to read in a data frame in
GTF format to define the genes and exons.

3.3 Count loading and annotation

The count matrix is used to construct a DGEList class object. This is the main data class
in the edgeR package. The DGEList object is used to store all the information required to
fit a generalized linear model to the data, including library sizes and dispersion estimates
as well as counts for each gene.

> library(edgeR)

> options(digits=3)

> y <- DGEList(fc$counts, group=group)
> colnames(y) <- targets$GEQ

Human-readable gene symbols can also be added to complement the Entrez identifiers
for each gene, using the annotation in the org.Mm.eg.db package.

\

require(org.Mm.eg.db)

y$genes <- select(org.Mm.eg.db,keys=rownames(y),columns="SYMBOL")
head (y$genes)

ENTREZID SYMBOL

vV Vv

1 497097 Xkrd
2 100503874 Gm19938
3 100038431 Gm10568
4 19888 Rp1l
5 20671 Sox17
6 27395 Mrplib
Notes

e In the GLM framework, specifying group is not strictly necessary for the construction
of the DGEList. It will not be used in the analysis when a design matrix is supplied.
Setting group is only done here for the sake of completeness.

e Users should pick an organism package corresponding to their biological system.
For example, the appropriate package for human data would be org.Hs.eg.db. More
organism packages can be found on the Bioconductor website.



3.4 Filtering to remove low counts

Genes with very low counts across all libraries provide little evidence for differential ex-
pression. In addition, the pronounced discreteness of these counts interferes with some of
the statistical approximations that are used later in the pipeline. These genes should be
filtered out prior to further analysis. Here, a gene is only retained if it is expressed at a
count-per-million (CPM) above 0.5 in at least two samples.

> keep <- rowSums(cpm(y) > 0.5) >= 2
> y <- ylkeep,]
> summary (keep)

Mode FALSE TRUE NA’s
logical 11375 15804 0

Note that the whole DGEList object, including annotation as well as counts, subsets by
rows as if it was a matrix. This ensures the annotation and counts continue to be aligned
correctly in the subsetted object.

A CPM of 0.5 is used as it corresponds to a count of 1015 for the library sizes in this
data set. If the count is any smaller, it is considered to be very low, indicating that the
associated gene is not expressed in that sample. A requirement for expression in two or
more libraries is used as each group contains two replicates. This ensures that a gene will
be retained if it is only expressed in one group.

Notes

e Smaller CPM thresholds are usually appropriate for larger libraries. As a general
rule, a good threshold can be chosen by identifying the CPM that corresponds to a
count of 10, which in this case is about 0.5:

> cpm(10, mean(y$samples$lib.size))
[,1]
[1,] 0.446

Users should filter with CPMs rather than filtering on the counts directly, as the
latter does not account for differences in library sizes between samples.

3.5 Normalization for composition bias

TMM normalization is performed to eliminate composition biases between libraries. This
generates a set of normalization factors, where the product of these factors and the library
sizes defines the effective library size. The calcNormFactors function returns the DGEList
argument with only the norm.factors changed.

> y <~ calcNormFactors(y)
> y$samples

group lib.size norm.factors
GSM1480297  B.virgin 23227641 1.237
GSM1480298  B.virgin 21777891 1.214
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Expression log-ratio (this sample vs others)

10

Average log-expression

Figure 1: A MA plot of expression in sample 1, against the average expression across all
other samples. Each point represents a gene, and the red line lies at a M-value of zero.

GSM1480299 B.pregnant 24100765 1.126
GSM1480300 B.pregnant 22665371 1.070
GSM1480301 B.lactate 21529331 1.036
GSM1480302 B.lactate 20015386 1.087
GSM1480291  L.virgin 20392113 1.368
GSM1480292 L.virgin 21708152 1.365
GSM1480293 L.pregnant 22241607 1.005
GSM1480294 L.pregnant 21988240 0.923
GSM1480295 L.lactate 24723827 0.529
GSM1480296 L.lactate 24657293 0.536

The normalization factors multiply to unity across all libraries. A normalization factor
below unity indicates that the library size will be scaled down, as there is more suppression
(i.e., composition bias) in that library relative to the other libraries. This is also equivalent
to scaling the counts upwards in that sample. Conversely, a factor above unity scales up
the library size and is equivalent to downscaling the counts.

The performance of the TMM normalization procedure can be examined using mean-
difference (MD) plots. This visualizes the library size-adjusted log-fold change between
two libraries (the difference) against the average log-expression across those libraries (the
mean). In Figure 1, an MD plot is generated by comparing sample 1 against an artificial
library constructed from the average of all other samples.
> plotMD(cpm(y, log=TRUE), column=1)
> abline(h=0, col="red", lty=2, lwd=2)

Ideally, the bulk of genes should be centred at a log-fold change of zero. This indicates
that any composition bias between libraries has been successfully removed. This quality
check should be repeated by constructing a MD plot for each sample.

Notes

11



e The MD plot shown above compares each library to all others. An alternative is to
compare each library to a single reference library. The code below uses sample 6 as
a reference, and compares sample 1 to this reference.

> plotMD(cpm(y[,c(1,6)], log=TRUE))

This may be easier to interpret as any problems with other libraries will not affect
the MD plot for this pair. As a rule of thumb, the reference library should not be
very large or small, e.g., use the sample with the median library size.

e In extreme cases, trends may be observed in the MD plot. These trended biases can-
not be removed with scaling normalization methods like TMM. Rather, non-linear
methods are required. These were traditionally developed for normally-distributed
microarray intensities, but can be applied here on log-counts.

> logy <- log(y$counts + 0.5)
> normy <- normalizeBetweenArrays(logy, method="cyclicloess")
> y$offset <- normy - logy

3.6 Exploring differences between libraries

The data can be explored by generating multi-dimensional scaling (MDS) plots. This visu-
alizes the differences between the expression profiles of different samples in two dimensions.
Figure 2 shows the MDS plot for the mammary gland data.

points <- c(0,1,2,15,16,17)

colors <- rep(c("blue", "darkgreen", "red"), 2)

plotMDS(y, col=colors[group], pch=points[group])

legend("topleft", legend=levels(group),
pch=points, col=colors, ncol=2)

+ V V Vv VvV

The distance between each pair of samples in the MDS plot is calculated as the leading fold
change, defined as the root-mean-square of the largest 500 loge-fold changes between that
pair of samples. Replicate samples from the same group cluster together in the plot, while
samples from different groups form separate clusters. This indicates that the differences
between groups are larger than those within groups, i.e., differential expression is greater
than the variance and can be detected. In Figure 2, the distance between basal samples
on the left and luminal cells on the right is about 6 units, corresponding to a leading fold
change of about 64-fold (2% = 64) between basal and luminal. The expression differences
between virgin, pregnant and lactating are greater for luminal cells than for basal.

Notes

e The MDS plot can be simply generated with plotMDS(y). The additional code is
purely for aesthetics, to improve the visualization of the groups.

e Clustering in the MDS plot can be used to motivate changes to the design matrix in
light of potential batch effects. For example, imagine that the first replicate of each

12
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Figure 2: The MDS plot of the mammary gland RNA-seq data set. Samples are separated by the
cell type in the first dimension, and by the mouse status in the second dimension.

group was prepared at a separate time from the second replicate. If the MDS plot
showed separation of samples by time, it might be worthwhile adding an additional
column to design to represent this time-based effect.

3.7 Dispersion estimation

The trended NB dispersion is estimated using the estimateDisp function. This returns
the DGEList object with additional entries for the estimated NB dispersions for all gene.
These estimates can be visualized with plotBCV, which shows the root-estimate, i.e., the
biological coefficient of variation for each gene (Figure 3).

> y <- estimateDisp(y, design, robust=TRUE)
> plotBCV(y)

In general, the trend in the NB dispersions should decrease smoothly with increasing
abundance. This is because the expression of high-abundance genes is expected to be more
stable than that of low-abundance genes. Any substantial increase at high abundances may
be indicative of batch effects or trended biases. The value of the trended NB dispersions
should range between 0.005 to 0.05 for laboratory-controlled biological systems like mice
or cell lines, though larger values will be observed for patient-derived data (> 0.1) or
single-cell data (> 1). Note that tagwise and common estimates are also shown here but
will not be used further.

For the QL dispersions, estimation can be performed using the glmQLFit function. This
returns a DGEGLM object containing the estimated values of the GLM coefficients for each
gene. It also contains a number of EB statistics, e.g., the fitted mean-QL dispersion trend,
the squeezed QL estimates and the prior degrees of freedom (df). These can be visualized
with the plotQLDisp function (Figure 4).
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Figure 3: A plot of the biological coefficient of variation against the average abundance of each
gene. Coefficients are shown corresponding to the estimates for the common, trended and tagwise
NB dispersions.

> fit <- glmQLFit(y, design, robust=TRUE)
> head(fit$coefficients)
B.lactate B.pregnant B.virgin L.lactate L.pregnant L.virgin

497097 -11.14 -12.02 -11.23 -19.0 -19.03 -19.0
20671 -12.77 -12.51 -12.15 -14.5 -14.31 -14.1
27395 -11.27 -11.30 -11.53 -10.6 -10.87 -10.9
18777 -10.15 -10.21 -10.77 -10.1 -10.39 -10.4
21399 -9.89 -9.74 -9.79 -10.2 -9.97 -10.0
58175 -16.16 -14.86 -15.99 -13.3 -12.29 -12.1

> plotQLDisp(fit)

EB squeezing of the raw dispersion estimators towards the trend reduces the uncer-
tainty of the final estimators. The extent of this moderation is determined by the value
of the prior df, as estimated from the data. Large estimates for the prior df indicate that
the QL dispersions are less variable between genes, meaning that stronger EB moderation
can be performed. Small values for the prior df indicate that the dispersions are highly
variable, meaning that strong moderation would be inappropriate.

> summary (fit$df.prior)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.15 6.76 6.76 6.63 6.76 6.76

Notes

e Setting robust=TRUE in glmQLFit is strongly recommended [17]. This causes glmQLFit
to estimate a vector of df.prior values, with lower values for outlier genes and
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Figure 4: A plot of the quarter-root QL dispersion against the average abundance of each gene.
Estimates are shown for the raw (before EB moderation), trended and squeezed dispersions.

larger values for the main body of genes. This has two advantages. First, it means
that outlier genes with unusually large or small QL dispersions will be assigned
lower prior df values, meaning that they will be less strongly squeezed towards the
mean-dependent trend. This prevents genes with extremely low dispersions from
being inappropriately called as significant. Second, and most importantly, it allows
a higher prior df to be estimated for the main body of non-outlier genes. This
increases the total df and increases statistical power to detect differential expression
for most genes.

e Setting robust=TRUE in estimateDisp has no effect on the downstream analysis, but
is nevertheless very useful as it identifies genes that are outliers from the mean-NB
dispersion trend. Outliers are marked by small prior.df values:

> o <- order(y$prior.df)
> y$genes[o[1:6],]
ENTREZID SYMBOL

615 12835 Col6a3
1616 215866 L0C215866
2745 140703 Emid1
7070 20390 Sftpd
7789 21943  Tnfsfill
16048 11828 Agp3

In mouse data sets, this set of outliers may be enriched for sex-linked genes, when
replicates are from different sexes; ribosomal genes, when there are technical issues
with ¢cDNA preparation; or immunoglobulins, when the cell population is contami-
nated with plasma cells. If an obvious pattern can be identified among the outlier
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genes, the associated set of genes can be removed beforehand in order to avoid
distorting the trended NB dispersion estimates. In this case, there is no apparent
enrichment of genes from any particular group, so no action is required.

e Estimating the QL dispersion requires special care for genes that have all counts
exactly zero within a treatment group. glmQLFit handles this situation by reduc-
ing the effective residual degrees of freedom for such genes. The output vector
df.residual.zeros contains the effective residual degrees of freedom used to esti-
mate the raw QL dispersions.

3.8 Testing for differential expression

The final step is to actually test for significant differential expression in each gene, using
the QL F-test. The contrast of interest can be specified using the makeContrasts function.
Here, genes are detected that are DE between the basal pregnant and lactating groups.
This is done by defining the null hypothesis as B.pregnant - B.lactate = 0.

> con <- makeContrasts(B.pregnant - B.lactate, levels=design)
> res <- glmQLFTest(fit, contrast=con)

The top set of most significant genes can be examined with topTags. Here, a positive
log-fold change represents genes that are up in B.pregnant over B.lactate. Multiplicity
correction is performed by applying the Benjamini-Hochberg method on the p-values, to
control the false discovery rate (FDR). The total number of DE genes in each direction at
a FDR of 5% can be examined with decideTestsDGE.

> topTags(res)

Coefficient: -1*B.lactate 1*B.pregnant

ENTREZID SYMBOL logFC logCPM F  PValue FDR
18071 12992 Csnls2b -6.09 10.18 421 4.71e-11 7.45e-07
22881 211577 Mrgprf -5.15  2.74 345 1.30e-10 8.06e-07
12177 226101 Myof -2.32 6.44 322 1.97e-10 8.06e-07
851 381290 Atp2b4 -2.14  6.14 320 2.04e-10 8.06e-07
9279 140474 Muc4 7.17 6.05 308 2.63e-10 8.31e-07
18829 231830 Micall2 2.25 5.18 282 4.49e-10 1.18e-06
2491 24117 Wifl 1.82 6.76 260 7.28e-10 1.58e-06
18684 12740 Cldn4 5.32 9.87 299 8.35e-10 1.58e-06
22829 21953 Tnni2 -5.75 3.86 314 9.02e-10 1.58e-06
19483 231991 Crebb -2.57 4.86 241 1.17e-09 1.85e-06

The top gene Csnls2b has a large negative log2-fold-change, showing that it is far more
highly expressed in lactating than pregnant mice. This gene is known to be a major source
of protein in milk.

There are in fact nearly 2500 DE genes in this comparison:

> is.de <- decideTestsDGE(res, p.value=0.05)
> summary(is.de)

[,1]
-1 2094
0 11307
1 2403
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Figure 5: A smear plot showing the log-fold change and average abundance of each gene. DE
genes are marked in red.

The differential expression test results can be visualized using a smear plot (Figure 5).
The log-fold change for each gene is plotted against the average abundance, i.e., 1logCPM in
the result table above. Significantly DE genes at a FDR of 5% are highlighted in red.

> plotSmear(res, de.tags=rownames(res) [is.de!=0])

Notes

e While the likelihood ratio test (LRT) is a more obvious choice for inferences with
GLMs, the QL F-test is preferred as it reflects the uncertainty in estimating the
dispersion for each gene.

e The expression supplied to makeContrasts is assumed to equate to zero, in order to
define the null hypothesis for the contrast. The signs of the terms in the expres-
sion determine how the log-fold change is to be interpreted. For example, setting
B.lactate - B.pregnant in makeContrasts would return positive log-fold changes for
genes that are upregulated in the basal lactating group.

4 Advanced usage

4.1 Analysis of variance

The differential expression analysis of two-group comparison can be easily extended to
comparisons between three or more groups. This is done by creating a matrix of contrasts,
where which each column represents a contrast between two groups of interest. In this
manner, users can perform a one-way analysis of variance (ANOVA) for each gene.
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As an example, suppose we want to compare the three groups in the luminal popula-
tion, i.e., virgin, pregnant and lactating. An appropriate contrast matrix can be created
as shown below, to make pairwise comparisons between all three groups.

> con <- makeContrasts(

+ L.PvsL = L.pregnant - L.lactate,
+ L.VvsL = L.virgin - L.lactate,
+ L.VvsP = L.virgin - L.pregnant, levels=design)

The QL F-test is then applied to identify genes that are DE among the three groups.
This combines the three pairwise comparisons into a single F-statistic and p-value. The
top set of significant genes can be displayed with topTags.
> res <- glmQLFTest(fit, contrast=con)
> topTags(res)

Coefficient: LR test of 2 contrasts
ENTREZID SYMBOL logFC.L.PvsL logFC.L.VvsL logCPM F

19230 19242 Ptn -1.54 7.26 7.96 2390

15679 13645 Egf -5.36 -7.22  3.79 1164

21207 52150 Kcnk6 -2.42 -7.00 5.94 1021

18071 12992 Csnils2b -8.55 -11.36 10.18 1051

23907 15439 Hp 1.08 5.42 4.90 988

22626 14183 Fgfr2 -1.15 3.95 7.37 953

20062 11941  Atp2b2 -7.37 -10.56 6.62 1135

2901 20856 Stc2 -1.81 3.19 6.09 918

9083 13358 Slc2b5ail -4.13 -4.91 7.50 888

8278 17068 Lyéd 3.42 9.24 4.65 884
PValue FDR

19230 3.78e-17 5.97e-13

15679 3.66e-15 2.89%e-11

21207 8.39e-15 3.25e-11

18071 9.87e-15 3.2be-11

23907 1.03e-14 3.25e-11

22626 1.30e-14 3.25e-11

20062 1.61e-14 3.25e-11

2901 1.65e-14 3.25e-11

9083 2.03e-14 3.30e-11

8278 2.09e-14 3.30e-11

Notes

e Note that the three contrasts of pairwise comparisons are linearly dependent. Con-
structing the contrast matrix with any two of the contrasts would be sufficient to
specify an ANOVA test. For instance, the contrast matrix shown below produces
the same test results but with a different column of log-fold changes.

> con <- makeContrasts(
+ L.PvsL = L.pregnant - L.lactate,
+ L.VvsP = L.virgin - L.pregnant, levels=design)

If all three contrasts are present in the contrast matrix, then only the log-fold changes
of the first two contrasts are shown in the output of topTags.
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4.2 Complicated contrasts

The GLM framework is highly flexible in that arbitrary contrasts can be specified by the
user. Suppose we are interested in the differences in the time effect from late pregnancy
to early lactation between the two cell populations, i.e., whether the change in expression
between pregnant and lactating groups for basal cells is the same as that for luminal cells.
An appropriate contrast can be made as shown below.

> con <- makeContrasts(
+ (L.pregnant-L.lactate)-(B.pregnant-B.lactate),
+ levels=design)

The contrast is passed to glmQLFTest to test for genes that are DE under this comparison.
The top set of DE genes can be viewed with topTags. A positive log-fold change represents
a stronger time effect in the luminal over the basal population.

> res <- glmQLFTest(fit, contrast=con)
> topTags(res)
Coefficient: 1x*B.lactate -1*B.pregnant -1*L.lactate 1*L.pregnant

ENTREZID SYMBOL logFC logCPM F  PValue FDR
8947 19041 Ppl 4.62 6.96 525 9.60e-12 1.52e-07
19483 231991 Creb5 5.61 4.86 439 2.93e-11 2.07e-07
7967 20512 Slcla3 -5.03 3.69 418 3.93e-11 2.07e-07
4354 217294 BCO06965 3.88 4.67 372 8.14e-11 2.92e-07
1929 14598 Ggtl -3.17 6.38 357 1.04e-10 2.92e-07
9083 13358 Slc25al -3.47 7.50 354 1.11e-10 2.92e-07
12763 192166 Sardh -2.92 5.11 342 1.36e-10 3.01e-07
25207 19659 Rbpl 4.40 6.81 336 1.65e-10 3.01e-07
15727 67547 Slc39a8 -6.19 5.11 378 1.72e-10 3.01e-07
6536 14063 F2rl1 3.92 5.60 302 2.95e-10 4.34e-07

4.3 Gene Ontology enrichment analysis

Further analyses are required to interpret the differential expression results in a biological
context. One common downstream procedure is a gene ontology (GO) enrichment analysis.
Genes are grouped into GO categories, or GO terms, by some common biological property.
Then, given a set of genes that are up- or down-regulated under a certain contrast of
interest, a GO enrichment analysis will find which GO terms are over-represented (or
under-represented) using annotations for the genes in that set.

Suppose we want to identify GO terms that are over-represented in the basal lactating
group compared to the basal pregnancy group. This can be achieved by applying the
goana function to the differential expression results of that comparison. The top set of
most enriched GO terms can be viewed with the topGO function.

> con <- makeContrasts(B.lactate - B.pregnant, levels=design)
> res <- glmQLFTest(fit, contrast=con)
> go <- goana(res, species = "Mm")
> topGO(go, n=10)
Term Ont N Up Down
G0:0044822 poly(A) RNA binding MF 1077 84 324
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G0:0003723 RNA binding MF 1391 118 383

G0:0042254 ribosome biogenesis BP 190 5 102

G0:0022613 ribonucleoprotein complex biogenesis BP 285 18 127

G0:0022626 cytosolic ribosome CC 85 0 61

G0:0005730 nucleolus CC 667 74 213

G0:0030529 ribonucleoprotein complex CC 592 34 195

G0:0006364 rRNA processing BP 136 2 72

G0:0016072 rRNA metabolic process BP 139 4 72

G0:0003676 nucleic acid binding MF 2748 329 593
P.Up P.Down

G0:0044822 1.000 2.85e-38

G0:0003723 1.000 6.49e-36

G0:0042254 1.000 2.69e-35

G0:0022613 1.000 6.31e-33

G0:0022626 1.000 1.23e-31

G0:0005730 0.989 7.50e-29

G0:0030529 1.000 2.35e-28

G0:0006364 1.000 8.95e-25

G0:0016072 1.000 5.09e-24

G0:0003676 1.000 1.52e-23

The row names of the output are the universal identifiers of the GO terms, with one
term per row. The Term column gives the names of the GO terms. These terms cover
three domains - biological process (BP), cellular component (CC) and molecular function
(MF), as shown in the Ont column. The N column represents the total number of genes
that are annotated with each GO term. The Up and Down columns represent the number of
genes with the GO term that are significantly up- and down-regulated in this differential
expression comparison, respectively. The P.Up and P.Down columns contain the p-values
for over-representation of the GO term across the set of up- and down-regulated genes,
respectively. The output table is sorted by the minimum of P.Up and P.Down by default.

Notes

e Users can specify the domain of the enriched GO terms in topGO. For instance,
topGO(go,ontology="BP") lists the top set of most enriched GO terms that are related
to a biological process. This avoids other domains that are not of interest.

e The goana function uses the NCBI RefSeq annotation. Therefore, the Entrez Gene
identifier (ID) should be supplied for each gene as the row names of res.

e Obviously, users should set species according to the organism being studied.

4.4 Rotation gene set tests

Another downstream step uses the rotation gene set test (ROAST) [19]. Given a set of
genes, the aim of this procedure is to test whether the majority of the genes in the set are
DE across the contrast of interest. It is useful when the specified set contains all genes
involved in some pathway or process, such that systematic differential expression across
the set indicates a change in the activity of the entire pathway or process.
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In our case study, suppose we are interested in three GO terms related to cytokinesis.
Each term will be used to define a set containing all genes that are annotated with that
term. The names of these terms can be viewed as shown below.

> cyt.go <- c("G0:0032465", "GO:0000281", "G0O:0000920")
> term <- select(G0.db, keys=cyt.go, columns="TERM")

> term

GOID TERM
1 G0:0032465 regulation of cytokinesis
2 G0:0000281 mitotic cytokinesis

3 G0:0000920 cytokinetic cell separation

The first step is to extract the set of genes for each GO term from the GO database.
We construct a list of three components, each of which is a vector of Entrez Gene IDs for
all genes annotated with one of the GO terms. We then convert the Gene IDs into row
indices of the fit object using the function ids2indices.

> Rkeys(org.Mm.egGO2ALLEGS) <- cyt.go
> ind <- ids2indices(as.list(org.Mm.egGO2ALLEGS),
+ fit$genes$ENTREZID)

Finally, we proceed to run ROAST on the defined gene sets for the contrast of interest.
Suppose the comparison of interest is between the virgin and lactating groups in the basal
population. We use mroast to test for multiple gene sets.

> con <- makeContrasts(B.virgin-B.lactate, levels=design)
> rst <- mroast(y, index=ind, design=design, nrot=9999,

+ contrast=con)
> rst
NGenes PropDown PropUp Direction PValue FDR
G0:0032465 42 0.167 0.476 Up 0.0004 0.00105
G0:0000920 16 0.688 0.188 Down 0.0014 0.00202
G0:0000281 26 0.385 0.423 Up 0.0058 0.00580
PValue.Mixed FDR.Mixed
G0:0032465 2e-04 2e-04
G0:0000920 le-04 le-04
G0:0000281 le-04 le-04

Each row corresponds to a single gene set, i.e., GO term. The NGenes column gives the
number of genes in each set. The PropDown and PropUp columns contain the proportions of
genes in the set that are down- and up-regulated, respectively, with absolute fold changes
greater than v/2. The net direction of change is determined from the significance of changes
in each direction, and is shown in the Direction column. The PValue provides evidence
for whether the majority of genes in the set are DE in the specified direction, whereas the
PValue.Mixed tests for differential expression in any direction. FDRs are computed from
the corresponding p-values across all sets.

A barcode plot can be produced with the barcodeplot function to visualize the results
for any particular set. In this case, visualization is performed for the gene set defined by
G0:0032465 (Figure 6). Here, genes are represented by bars and are ranked from left to
right by decreasing log-fold change. This forms the barcode-like pattern. The line above
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the barcode shows the relative local enrichment of the vertical bars in each part of the
plot. This particular plot suggests that most genes in this set are up-regulated in the
virgin group compared to the lactating group.

> res <- glmQLFTest(fit, contrast=con)
> barcodeplot (res$table$logFC, ind[[1]], main=names(ind) [1])

GO0:0032465

statistics

]
|

Enrichment 4 ¢

Down

10.561

1272 —
0.691

0.387 —
0.166 —|
-0.002 —
0.163 —
0.340 —
-0579 —
-0.982 —
8.885

Figure 6: A barcode plot of genes in one of the GO terms, for the comparison between virgin and
lactating groups in the basal population.

Notes

e Unlike goana, ROAST is not limited to GO terms. Any pre-defined gene set can be
used, for example KEGG pathways or MSigDB gene sets. A common application
is to use a set of DE genes that was defined from an analysis of an independent
data set. ROAST can then determine whether similar changes are observed in the
contrast of interest for the current data set.

e Even for GO-defined gene sets, goana and ROAST have different behaviours. In
goana, the significance of differential expression for a GO term is determined relative
to other DE genes that are not annotated with that term. In ROAST, only differen-
tial expression for the genes in the set are relevant to the significance of that set and
its corresponding term. goana depends on a significance cutoff to choose DE genes,
whereas ROAST does not require a cutoff and evaluates all genes in the set.

e The roast function can be used to test each gene set individually.

e ROAST estimates p-values by simulation, so the results may change slightly between
runs. More precise p-values can be obtained by increasing the number of rotations,
albeit at the cost of increased computational time.

e The smallest p-value that can be reported is 1/(2-nrot+ 1) where nrot is the number
of rotations. This lower bound can be decreased by increasing nrot.
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4.5 Session information

The session information describes the versions of R and of the packages that were used in
the analysis. This is useful for record-keeping purposes, and ensures that an analysis can
be reproduced even when the software is updated over time.

> sessionInfo()

R version 3.2.0 (2015-04-16)

Platform: x86_64-w64-mingw32/x64 (64-bit)

Running under: Windows 7 x64 (build 7601) Service Pack 1

locale:

[1] LC_COLLATE=English_Australia.1252
[2] LC_CTYPE=English_Australia.1252
[3] LC_MONETARY=English_Australia.1252
[4] LC_NUMERIC=C

[5] LC_TIME=English_Australia.1252

attached base packages:
[1] parallel stats4 stats graphics grDevices utils
[7] datasets methods base

other attached packages:

[1] GO.db_3.1.2 org.Mm.eg.db_3.1.2 RSQLite_1.0.0

[4] DBI_0.3.1 AnnotationDbi_1.30.1 GenomeInfoDb_1.4.0
[7] IRanges_2.2.1 S4Vectors_0.6.0 Biobase_2.28.0
[10] BiocGenerics_0.14.0 edgeR_3.10.0 limma_3.24.5

loaded via a namespace (and not attached):
[1] locfit_1.5-9.1 1lattice_0.20-31 grid_3.2.0 splines_3.2.0
[6] statmod_1.4.21
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