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Abstract

Measurements of the magnitude or duration of physical phenomenon
have the property that they are positive and continuous, except for the
possibility of exact zeroes when the phenomenon does not occur. Such data
cannot be transformed to normality by power transformations or any other
means, and special treatment of the zero observations is usually required.
The approach of this paper is to model quantity data using a family of
exponential family distributions intermediate between the Poisson and the
gamma families. These families have the feature of power mean-variance
relationships with exponent between one and two. Regression modelling is
possible using the established framework of generalized linear models. With
suitable assumptions this approach allows the information in both the zero
and positive observations to contribute to the estimation of all parts of the
model.

1 Introduction

McCullagh and Nelder (1989) discuss four distributions, namely the normal, Pois-
son, gamma and inverse-Gaussian, which fit into the generalized linear model
framework and which have variances proportion to some power of the mean, i.e.,
for which var(Y ) = φE(Y )θ for some φ and θ. For these four distributions θ is
0, 1, 2 and 3 respectively. Jørgensen (1987) gave a more general definition of a
generalized linear model distribution and showed that in fact any value outside
the interval (0, 1) is possible for θ. Those distributions with 1 < θ < 2 turn out
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to be Poisson mixtures of gamma distributions (Tweedie, 1984, p. 592; Jørgensen,
1987, p. 140). They are continuous and positive, except for an atom at zero.
The distribution with θ = 1.5 is the noncentral chi-squared distribution on zero
degrees of freedom discussed by Siegel (1979, 1985).

Data with exact zeros and power mean-variance relationships with 1 < θ < 2
are common, for example threshold models, weather variables such as wind speed,
rainfall, snowfall, and population size (Perry 1981, 1985). The author’s interest
in the problem was motivated by an experiment, conducted by the Department of
Child Health, University of Queensland, to compare the effects of six sleeping posi-
tions on gastro-esophageal reflux (GER) in infants (Ting et al, 1993). Esophageal
pH level, blood oxygen saturation, heart rate and apnoea were monitored for each
of twenty infants with a history of GER during eight hour nights. The infants
were placed in one sleeping position for the first half of the night and another posi-
tion for the second half. Summary pH measurements were calculated for each two
hour period. The four quarters of each night were not found to differ significantly
with respect to pH levels, and sleeping positions were randomly assigned, so the
experiment has the structure of an unbalanced randomized block experiment with
block size two. Children are considered to be suffering reflux when the pH-level in
their esophagus falls below four. The reflux variables considered most meaningful
by medical researchers are the percentage time in reflux, called the reflux index
(RI), and the area between the pH trace and the pH=4 line (AU4). The latter
variable is the value of (4−pH level) integrated over the time spent in episodes.
Ting et al (1993) found the sleeping positions to be significantly different, with
prone generally the best and supine or inclined supine the worst, with respect
to presence/absence of reflux, mean pH, number of reflux episodes, and oxygen
saturation. However a full information analysis of RI and AU4 was not possible
because these variables have mixed distributions being continuous except for the
positive probability of exact zeros. In this paper the use of the Poisson-gamma
generalized linear models is investigated for RI and AU4.

Although Jørgensen (1987, 1992) has used a Poisson-gamma generalized linear
model to analyse the amount spent by Amazonian peasants on hiring outside
labour power, there are a number of outstanding problems. One is that there
has been no satisfactory way to estimate the index parameter θ. See discussion
by Gilchrist (1987) and Burridge (1987) of Jørgensen’s 1987 paper. There is no
apriori reason to prefer one value over another for θ is the interval (0, 1) in most
applications. Another problem is that there has been no way to check the Poisson-
gamma distributional form in a regression context. In this paper it is shown that
maximum likelihood can be satisfactorily applied to estimate θ, and the provision
of the explicit likelihood function opens to way to check the distributional form
using quantile residuals as defined by Dunn and Smyth (1996).
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2 Poisson-gamma generalized linear models

Let f(y;µ, φ, θ) be the probability density function of a univariate random variable
Y , and suppose that E(Y ) = µ and var(Y ) = φµθ. We seek a density which
satisfies

∂ log f

∂µ
=
y − µ
φµθ

(1)

since this form for the derivative characterizes generalized linear model distribu-
tions (Smyth, 1991). Integrating, f must satisfy

log f =
∫ µ y − η

φηθ
dη =

1

φ

(
y
µ1−θ

1− θ
− µ2−θ

2− θ

)
+ c(y, φ, θ)

where c(y, φ, θ) is some function not depending on µ. It is a condition here that θ is
not equal to 1 or 2. Writing ν = µ1−θ/(1−θ) and κ(ν) = [(1−θ)ν](2−θ)/(1−θ)/(2−θ),
this is

log f =
1

φ
(yν − κ(ν)) + c(y, φ, θ)

which, for given θ, is of the form required for a generalized linear model distri-
bution (McCullagh and Nelder, 1989). Note that κ̇(ν) = µ and κ̈(ν) = µθ in
accordance with the usual generalized linear model theory.

The moment generating function of Y is

MY (t) =
∫

exp{1

φ
[y(ν + tφ)− κ(ν)] + c(y, φ, θ)}dy

= exp{1

φ
[κ(ν + tφ)− κ(ν)]}

so the cumulant generating function is

logMY (t) =
1

φ
[κ(ν + tφ)− κ(ν)]

=
1

φ

µ2−θ

2− θ
[(1 + tφ(1− θ)µθ−1)(2−θ)/(1−θ) − 1]

This can be compared with the cumulant generating function of Z = X1+. . .+XN ,
whereN is Poisson(λ) and, conditional onN , theXi are independent gamma(α,τ),
which is

logMZ(t) = λ[(1− τt)−α − 1]

Note that Z is a Poisson mixture of gamma distributions since Z given N is
gamma(Nα,τ). We see by identifying terms in the cumulant generating functions
that Y has the same distribution as Z with

λ =
1

φ

µ2−θ

2− θ
, α =

2− θ
θ − 1

, τ = φ(θ − 1)µθ−1

The requirement that the gamma shape parameter α be positive means that the
representation of Y as a Poisson mixture of gamma random variables is valid only
for 1 < θ < 2 . Note that λ > 0 and τ > 0 imply that µ > 0 and φ > 0 also.
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The density function f can now be written as

f(y;µ, φ, θ) = P (N = 0)d0(y) +
∞∑
j=1

P (N = j)fZ|N=j(y)

= e−λd0(y) +
∞∑
j=1

λje−λ

j!

yjα−1e−y/τ

τ jαΓ(jα)

where d0 is the Dirac delta function at zero and fZ|N is the conditional density of
Z given N . Therefore

log f =

{
−λ+ log d0(y) y = 0
−y/τ − λ− log y + logW (y, λ, α, τ) y > 0

where

W (y, λ, α, τ) =
∞∑
j=1

λj(y/τ)jα

j!Γ(jα)

Tweedie (1984, p. 586) has identified W as an instance of Wright’s (1933) gen-
eralized Bessel function. The function is not expressible however in terms of the
more common Bessel functions.

Feller (1968) and Jørgensen (1987) call the distribution of Y compound Pois-
son, while Johnson and Kotz (1971) call distributions of this type compound
gamma. Here it will be called simply Poisson-gamma in recognition of its various
characterizations as a Poisson mixture of gammas, as a Poisson sum of gammas,
or as an exponential family intermediate between the Poisson and gamma families.
The Poisson-gamma family intersects the noncentral χ2 family at θ = 1.5. The
χ2
ν(2λ) distribution can be expressed as the mixture of gamma(N + ν/2, 2) dis-

tributions where N is Poisson(λ), so the Poisson-gamma distribution with α = 1
and β = 2 is χ2

0(2λ). As θ ↑ 2 the distribution approaches a gamma(α′,τ ′) distri-
bution with α′ = 1/φ and τ ′ = φµ. As θ ↓ 1 the distribution of Y/φ approaches
Poisson(λ).

3 Parameter Estimation

In generalized linear model applications observations Y1, . . . , Yn will be assumed
independent with common φ and θ and with means µi which satisfy a link-linear
model

g(µi) = xTi β

where the xi are vectors of covariates and β is a p-dimensional vector of regression
coefficients.

For any given value of θ, maximum likelihood estimates of β and an unbiased
estimate of φ can be calculated as for a generalized linear model, for example using
the $OWN directive of GLIM (Payne, 1985) or using the make.family function of
S-Plus. As always in a generalized linear model, the maximum likelihood estimate
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of β does not depend on the dispersion parameter φ, but it does depend on θ.
The scoring iteration for β can be written as

βk+1 = (XTWX)−1XTWz

where W = diag(ġ(µi)
2µθi )

−1, z is a working vector with components ġ(µi)(yi −
µi) + g(µi), and all terms on the right-hand side are evaluated at the current
estimate βk. The iteration may be started at µi = yi, and converges reliably to
the maximum likelihood estimate β̂ for most link functions.

It is apparent from (1) that ∂2 log f/∂φ∂µ and ∂2 log f/∂θ∂µ have expectation
zero so that µ is orthogonal to both φ and θ. Since the likelihood depends on β only
through the µi, it is also true that β is orthogonal to φ and θ. One consequence of
this is that the standard errors for β obtained from the above generalized linear
model will be correct Fisher information standard errors even if φ and θ have been
estimated from the same data.

Maximum likelihood estimators of φ and θ can be obtained by directly maxi-
mizing the profile likelihood, by the pseudo-likelihood approach of Davidian and
Carroll (1987), or by the extended quasi-likelihood approach of Nelder and Preg-
ibon (1987). Given estimated values for β and θ, an unbiased estimate of φ can
obtained from

φ̃ =
n∑
i=1

[yi − µi(β̂)]2

µi(β̂)θ

Given θ̂, this is essentially equivalent to the pseudo-likelihood estimate.

4 Examples

Data for which the variance increases with the mean more rapidly than direct
proportionality but less rapidly than the mean squared is common. Consider the
wind speed data analysed by Haslett and Raftery (1989) consisting of daily mean
wind speeds at 12 meteorological stations in Ireland during the period 1961–1978.
Figure 1 shows that relationship between log-sample variance and log-sample mean
over the 12 sites is strikingly linear. The slope of the least squares line is 1.30,
suggesting that the Poisson-gamma distribution may be appropriate here. Sixteen
out of 78888 observations are exactly zero for this data set.

The maximum likelihood approach allows estimation of θ for single samples and
other data sets for which there is not a wide range of values for µ. Seigel (1985)
considered January snowfall in Seattle, in inches, for the years 1906 to 1960.
Figure 2 gives a profile likelihood plot for θ in this single sample problem, with
nominal 95% and 99% confidence bands. Seigel effectively assumed θ = 1.5; this
value is close to the centre of the confidence intervals for θ, justifying his analysis.

An experiment conducted by Joseph Ting in the Department of Child Health,
University of Queensland, provides a data set with several factors. Children are
considered to be suffering reflux if the ph-level in their esophagus falls below 4, and
this experiment compared the effect on reflux of six sleeping positions. Twenty ba-
bies of a few months age with a history of reflux had their ph-levels recorded during
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Figure 1: Plot of log-sample variance versus log-sample mean for daily mean wind
speeds at 12 sites in Ireland.
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Figure 2: Profile plot of θ for January snowfall in Seattle, 1906 to 1960. The
dashed and dotted lines indicate 95% and 99% confidence intervals.
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Table 1: Minus twice the log-profile likelihood for the reflux experiment with and
without sleeping position as a factor.

θ Child Child+Position Difference

1.1 869.0505 836.2950 32.7554
1.2 699.5124 677.8852 21.6272
1.3 632.6674 615.7370 16.9304
1.4 599.2437 584.9011 14.3426
1.5 581.9255 569.3087 12.6168
1.6 574.5833 563.3471 11.2362
1.7 575.2719 565.4217 9.8502
1.8 585.4402 577.3253 8.1149
1.9 615.3785 609.8962 5.4822

an 8 hour night. Two responses were tried. The first was − log(1−RI), where RI is
the percentage time in reflux. The second was − log(1−AU4/Duration times 4).
The response variable was the amount by which ph-level fell below 4, integrated
over the time spent in reflux, and this was recorded for each 2 hour period. Each
baby was assigned to two sleeping positions, one in the first half and one in the
second half of the night. A Poisson-gamma generalized linear model was fitted
with child as a 20 level factor and sleeping position as a 6 level factor. The log-
link was used, and the logarithm of the exact duration of each of the nominal two
hour periods was set as offset. Factors comparing the four 2 hour periods during
the night were found to be unimportant. Four children who experienced no reflux
during the night in either position were excluded from the analysis. Table 1 gives
minus twice the log-profile likelihood (excluding the Dirac delta term) with and
without sleeping position for various values of θ. The likelihood is maximized by
θ about 1.6 both with and without sleeping position. Looking at a finer grid of θ
values in Table 2, the likelihood is maximized without position at 1.64, with posi-
tion at 1.62, and the likelihood ratio test for sleeping position allowing estimation
of θ is about 10.8. As a χ2 variable on 5 degrees of freedom this corresponds
to a p-value of 0.055. Such a result from such a small study suggests further
investigation.
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Table 2: Minus twice the log-profile likelihood for the reflux experiment with and
without sleeping position as a factor.

θ Child Child+Position Difference

1.60 574.5833 563.3471 11.2362
1.61 574.2969 563.1937 11.1032
1.62 574.0880 563.1183 10.9697
1.63 573.9567 563.1211 10.8355
1.64 573.9031 563.2028 10.7004
1.65 573.9279 563.3640 10.5639
1.66 574.0320 563.6062 10.4258
1.67 574.2165 563.9309 10.2857
1.68 574.4833 564.3400 10.1433
1.69 574.8342 564.8360 9.9982
1.70 575.2719 565.4217 9.8502
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