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Abstract

Empirical Bayes is a statistical approach for estimating a series of unknown parameters
from a series of associated data observations. It provides an effective means to “borrow
strength” from the ensemble of cases when making inference about each individual case.
Such methods are ideally suited to genomic applications where data is collected for tens of
thousands of genes simultaneously. Empirical Bayes methods can however be less effective
when highly exceptional cases are present. This article proposes a practical solution whereby
exceptional cases are identified and the amount of “learning” from the ensemble appropriate
for each case is assessed on a case-specific basis. The approach is developed in detail for
the problem of estimating genewise variances from microarray data. In this context, the
proposed robust empirical Bayes procedure recognizes and protects against hyper-variable
genes. The new procedure improves statistical power for most genes in many microarray data
sets. Simulations show that the robust estimation procedure correctly controls the type I
error rate and does not increase the number of false discoveries when no hyper-variable genes
are present. In the presence of hyper-variable genes, the robust method improves power to
detect differential expression for the majority of genes that are not outliers. The proposed
robust method is applied to an example microarray data set, on which it correctly identifies
and downweights genes associated with a hidden covariate and detects more genes likely to
be scientifically relevant to the experimental conditions. The new procedure is implemented
in the limma software package which is freely available from the Bioconductor repository.
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1 Introduction

Empirical Bayes is a statistical approach for estimating a series of unknown parameters from
a series of associated data observations (Robbins, 1956). The approach assumes a Bayesian
hierarchical model but, instead of basing the prior distribution on prior knowledge, the prior
distribution is estimated from the marginal distribution of the observed data. This article focuses
on parametric empirical Bayes methods, wherein the prior distribution is specified up to a finite
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number of unknown parameters (Efron and Morris, 1977; Morris, 1983; Efron, 2010). Efron
(2003) credits Fisher and others (1943) with the first use of parametric empirical Bayes, but
the method was made popular by a series of seminal papers by Efron and Morris (1972, 1973,
1975) showing that empirical Bayes is a flexible alternative to the James-Stein estimator for
estimating high dimensional parameters.

Empirical Bayes is well suited to scientific contexts in which data is collected as a series of
cases or experiments and analogous statistical models are to be fitted to the data from each
case. Empirical Bayes then provides a compromise between fitting the model separately to
the data for each case, yielding case-specific parameter estimates, and fitting the model to all
the cases simultaneously under the assumption that the same parameter estimates are suitable
for all cases. By squeezing the case-wise parameter estimates towards to the global parameter
estimates, empirical Bayes provides a practical means to “borrow strength across experiments”
(Efron and Morris, 1973).

Empirical Bayes is ideally suited to genomic applications in which data is collected simulta-
neously for tens of thousands of genes or genomic locations. For the past 16 years, microarrays
have been a popular genomic technology for measuring gene activity levels, also known as gene
expression. A number of empirical Bayes statistical approaches have been developed for detect-
ing changes in gene expression levels between treatment conditions (Newton and others, 2001;
Lonnstedt and Speed, 2002; Broberg, 2003; Wright and Simon, 2003; Smyth, 2004; McCarthy
and Smyth, 2009). The most common use of empirical Bayes in genomics has been to mod-
erate genewise variance estimators. For example, the empirical Bayes moderated t-statistic of
Smyth (2004), which replaces the sample variance in the denominator of the t-statistic with the
posterior variance, has proved to offer much improved statistical power and false discovery rate
relative to the ordinary genewise t-statistic (Kooperberg and others, 2005; Murie and others,
2009; Ji and Liu, 2010; Jeanmougin and others, 2010). These and related methods have been
very successful and have been used in tens of thousands of genomic publications over the past
decade.

Parametric empirical Bayes procedures assume that the true casewise parameter values can
be viewed as a sample from a member of a specified parametric family of distributions. Although,
empirical Bayes procedures are insensitive to the exact form of the prior distribution family
(Berger, 1982; Berger and Berliner, 1986), the issue nevertheless can arise that there are a
small number of exceptional cases that do not seem to fit in with the distribution of the bulk
of the cases. Efron and Morris (1971, 1972) noted that some exceptional cases appeared to
“learn too much” from the ensemble of cases as they appeared to come from a different sub-
population. Efron and Morris (1975, 1977) and Efron (2010) exposited the case for special
treatment for exceptional cases in the context of baseball data. The batting averages of 18
major league baseball players was recorded for their first 45 times at bat during the 1970 season.
The aim was to predict the batting average for each player for the remainder of the baseball
season. Although empirical Bayes performs well overall, the cohort included an exceptionally
good hitter, Clemente, for whom the empirical Bayes estimate was a worse prediction than his
individual record. For an exceptional player like Clemente, the ensemble performance of the
group was not as relevant as the Bayesian model implies.

Efron and Morris (1971, 1972) proposed limited translation rules to combat the “Clemente
problem” when estimating a normal mean. This article proposes an alternative solution that
can be adapted in a practical manner to most empirical Bayes contexts. We view exceptional
cases as coming from an alternative prior distribution that is more diffuse than that for the
bulk of cases. The prior distribution for the non-outlier cases is estimated robustly, so that
exceptional cases have limited influence, and each case is then tested for concordance with this
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prior distribution. Finally the relevance of the prior is evaluated for each case in terms of the
posterior probability that the case is exceptional.

We develop our robust empirical Bayes strategy in detail in the context of estimating genewise
variances. Our procedure estimates, on a case-specific basis, the effective degrees of freedom that
should be associated with the prior global variance when estimating each individual variance.
The procedure integrates into the limma software pipeline for differential expression analysis of
microarray data (Smyth, 2005). In this context, the procedure recognises hyper-variable genes
(Dozmorov and others, 2004), improves statistical power for other genes, and protects against
hyper-variable genes being falsely called as differentially expressed.

Our approach to robustness is at the gene level, viewing hypervariable genes as outliers
rather than viewing individual expression values as outliers. The latter approach was taken
by Gottardo and others (2006) using a t-distribution rather than normal for the log-expression
values.

The plan for the remainder of this article is as follows. Section 2 reviews the standard
parametric empirical Bayes method. Section 3 outlines our robust parametric empirical Bayes
approach. Section 4 reviews the conjugate empirical Bayes model for variances. Robust hyper-
parameter estimation for variances is detailed in Sections 5.1 and 6. Sections 7 and 8 describe
the problem in terms of microarray data. Simulation results are shown in Section 9 and an
application of the robust method to a real microarray dataset involving pro-B cells is shown in
Section 10. Concluding remarks are offered in Section 11.

2 The parametric empirical Bayes method

The parametric empirical Bayes method can be summarized as follows. A series of observations
yg, g = 1, . . . , G, are observed. Each yg represents a case and each comes from a different
sampling distibution. Specifically, the distribution of yg depends on an unknown parameter θg
and, given θg, yg follows a known probability density function that we will write as f(y; θg).

The problem is to estimate all the θg, g = 1, . . . , g, so that reliable inference can be conducted
about each case g. The difficulty that empirical Bayes addresses is that the number of cases
may be large and each yg may provide only limited information for estimating θg. The idea of
empirical Bayes is to improve on individual casewise estimation of θg by “borrowing strength”
from the whole ensemble of cases.

The cases are assumed to be connected through a prior distribution. Specifically the θg
are assumed to be sampled from a distribution with density g(θg; θ0, τ0), where θ0 parametrizes
the location of the distribution and τ0 parametrizes its precision. We will assume that τ0 = 0
corresponds to an uninformative diffuse prior while τ0 =∞ corresponds to a point distribution
with all mass at θ0. The hyperparameters θ0 and τ0 are unknown, and it is this fact that
distinguishes empirical Bayes from regular Bayesian inference.

The empirical Bayes method is to estimate the hyperparameters θ0 and τ0 by fitting the
marginal distribution of the yg,

h(y; θ0, τ0) =

∫
f(y; θ)g(θ; θ0, τ0)dθ

to the observed empirical distribution of the yg. Casewise estimators of the θg are then obtained

from the posterior distribution of θg given yg, plugging in the estimates θ̂0 and τ̂0 as if they had
been prior specified. The weight given to the prior is determined by τ0. If the τ0 is zero, the
posterior estimates θ̃g will be equal to the individual casewise maximum likelihood estimates of
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θg. If τ0 is large, then θ̃g will be squeezed towards θ0. If τ0 = ∞ then the yg are treated as an
identically distributed sample.

3 Robust empirical Bayes with exceptional cases

This section outlines in general terms our proposed approach to robust empirical Bayes. Our
robust empirical Bayes approach envisages that there may be a minority of cases for which it
is not reasonable to treat the θg as coming from the same prior distribution g(θg; θ0, τ0) as the
bulk of the cases. We therefore consider the possibility that there are a minority of cases for
which θg ∼ g(θg; θ0, τ1) with τ1 < τ0.

The first step of our approach is to estimate θ0 and τ0 robustly from the marginal distribution
of the yg. Any suitably robust estimators could be used. Note that if outlier cases are present,
then the robust τ̂0 will usually be larger than a non-robust estimator would have been.

An estimate is also required for the outlier precision τ1. Our methodology requires only
a rough estimate for this parameter, which we can obtain by fitting the marginal distribution
h(y; θ0, τ1) to the most extreme value of yg.

We then assess whether each case θg can be reasonably viewed as coming from the prior

g(θg; θ̂0, τ̂0). For each g, we conduct a hypothesis test of the null hypothesis that θg = θ̂0. Let
pg be the p-value from this test. The p-values can be converted into posterior probabilities in
the following way. Let q be the prior probablity that case g is not an outlier and let rg be the
marginal probability of observing an observation more extreme than yg. Using Bayes theorem,
the posterior probability that case g is not an outlier given yg is πg = pgq/rg. We conservatively
put q = 1 and estimate rq empirically from the rank of yg amongst all the observed values of y.
Plugging these values in the above formula yields a conservative value for πg.

The crux of our approach is to allow a case-specific value for the prior precision τ . The
case-wise posterior mean estimator for τ is

τ̃g = πg τ̂0 + (1− πg)τ̂1.

Finally the posterior estimator of θg is obtained from the posterior distribution of θg given yg
with θ0 = θ̂0 and τ0 = τ̃g. This has the effect that any case judged to be a possible outlier will
have smaller τ̃g, so the prior will receive less weight when estimating θg, and hence θ̃g will be
squeezed less strongly towards the consensus value.

The robust approach produces estimates for outlying observations that are allowed to be
more case-specific. Meanwhile, the estimates for the bulk of cases that are not outliers are
squeezed more heavily to the global average than would be done by a non-robust approach,
allowing more information to be borrowed from the ensemble. Potentially this improves the
accuracy of estimation for both outlier and non-outlier cases.

4 Conjugate empirical Bayes for variances

The specific empirical Bayes application that we consider in this article is the problem of esti-
mating a series of true variances from a corresponding series of sample variances. This section
reviews the conjugate Bayesian model for variances and the hyperparameter estimation strategy
proposed by Smyth (2004). The notation used here follows Smyth (2004). Suppose that for
each case g, g = 1, . . . , G, a sample variance s2g on dg degrees of freedom is available to estimate
the true variance σ2g . Given σ2g , s2g is assumed to follow a scaled chisquare distribution with dg
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degrees of freedom and mean σ2g . Abusing notation slightly, we will write this as

s2g ∼ σ2gχ2
dg/dg.

It is convenient to assume a conjugate prior for the true variances. The σ2g are assumed to
be sampled from a scaled inverse chi-square prior distribution with degrees of freedom d0 and
location s20:

σ2g ∼ s20d0/χ2
d0 .

Here d0 determines the precision of the prior distribution and s20 its location. Once the prior
distribution is specified, the posterior distribution for the variances is

σ2g |s2g ∼
d0s

2
0 + dgs

2
g

χ2
d0+dg

so the posterior expectation of σ−2
g given s−2

g is s̃−2
g with

s̃2g =
d0s

2
0 + dgs

2
g

d0 + dg
.

Empirical estimates for s20 and d0 are obtained from the marginal distribution of the s2g.
Under the hierarchical model, the marginal distribution of s2g is s20Fdg ,d0 , where Fdg ,d0 represents
the F -distribution on dg and d0 degrees of freedom. Accurate moment estimators for s20 and
d0 have been described by Smyth (2004). Moment estimation is in terms of the log-variances,
zg = log s2g. The zg follow a Fisher’s z-distribution which, unlike the F -distribution, is roughly
symmetric and has finite moments of all orders. The hyperparameters s20 and d0 are estimated
by matching the theoretical mean and variance of the z-distribution to the observed sample
mean and variance of the zg.

The empirical estimates s20 and d0 are then plugged into the above formulas to obtain s̃2g. The
prior variance s20 is an appropriate average of the sample variances s2g, so the posterior variances
s̃2g are equal to the casewise variances squeezed towards the average variance. The strength of
the squeezing is determined by the degrees of freedom attributed to the prior relative to the
degrees of freedom associated with the sample variances.

5 Robust empirical Bayes for variances

5.1 Robust hyperparameter estimation

We now develop a robust empirical Bayes approach for estimating variances. The robust ap-
proach uses the same hierarchical model described above for the majority of cases, but in addi-
tion it allows for the possibility that a minority of the variances σ2g might be sampled from an
alternative more diffuse prior, σ2g ∼ s20d1/χ2

d1
with 0 ≤ d1 < d0.

The first step is to modify the moment estimation scheme of Smyth (2004) to estimate the
hyperparameters s20 and d0 robustly for the bulk of the cases. Our approach is to apply moment
estimation to the Winsorized sample variances. The idea of Winsorizing is to reset a specified
proportion of the most extreme sample variances to less extreme values (Tukey, 1962).

Let pl be the maximum proportion of outliers allowed in the lower tail of the s2g, and let pu
be the maximum proportion of outliers in the upper tail. Let ql and qu be the corresponding
quantiles of the empirical distribution of s2g, so that pl of the variances are less than or equal to
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ql and pu are greater than or equal to qu. The empirical Winsorizing transformation resets the
extreme values of the sample variances to the lower and upper quantiles:

win(s2g) =


ql if s2g ≤ ql
s2g otherwise

qu if s2g ≥ qu.

Write zg = log win(s2g) for the Winsorized variances on the log-scale. Let z̄ and s2z be the mean
and variance of the observed values of zg.

Similarly define the Winsorized F -distribution as follows. If f ∼ Fdg ,d0 then the Winsorized
random variable is

win(f) =


ql if f ≤ ql
f otherwise
qu if f ≥ qu.

where now ql and qu are the lower tail pl and upper tail pu quantiles of the Fdg ,d0 distribution.
Write ν(dg, d0) and φ(dg, d0) for the expected value and variance of log win(f). These distri-

butional quantities can be computed by numerical integration. An efficient computation using
Gaussian qaudrature is described in the next section.

Assuming that the dg are all equal, the hyperparameter d0 is estimated by equating s2z =
φ(dg, d0) and solving for d0 using a modified Newton algorithm (Brent, 1973). Having estimated

d0, the logarithm of the parameter s20 is estimated by z̄ − ν(dg, d̂0).
In practice, residual degrees of freedom usually are equal for all genes, but occasionally some

genes may have reduced dg because of missing expression values for some samples. If this is
the case, then the s2g with reduced dg are transformed to equivalent random variables with the
same dg as the other genes before applying the above algorithm. Let d be the maximum dg.
First the hyperparameters d0 and s20 are estimated by the non-robust algorithm. Then the s2g
are transformed to s20F

−1
d,d0

Fdg ,d0(s2g/s
2
0) where Fk1,k2 denotes here the cumulative distribution

function of the F -distribution on k1 and k2 degrees of freedom. This yields transformed s2g that
can be treated as all on d degrees of freedom.

5.2 Case-specific prior degrees of freedom

The alternative prior degrees of freedom d1 is estimated by maximum likelihood from the max-
imum value of s2g. We then obtain a case-specific estimate of the prior degrees of freedom by
combining d0 and d1 according to the probability that each case is an outlier.

Let pg be the p-value for testing the hypothesis that case g is an outlier, defined by pg =
P (f > s2g/s

2
0) where f ∼ Fdg ,d0 . Write rg for the proportion of all observed s2 values greater

than a particular s2g. Specifically rg is (r − 0.5)/G where r is the rank of s2g. Using Bayes
theorem, and assuming that most cases are not outliers, we estimate the probability that case
g is not an outlier by πg = pg/rg.

This expression for πg is not necessarily monotonic in s2g or pg. We ensure that πg is a
non-decreasing function of pg in the following manner. First the cases are ordered in increasing
order of pg. Then the cumulative mean π̄g =

∑g
i=1 πi is computed for each g. Let gm be the first

value of g for which π̄g achieves its minimum. All πg for g = 1, . . . , gm are set to the minimum
value of π̄g. This is to allow for the possibility that πg might be small for a group of cases but
not for the most extreme case. Finally, a cumulative maximum filter is applied to the πg, after
which the πg are non-decreasing.
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Having computed the πg, the casewise prior degrees of freedom are estimated by

d̂0g = πgd̂0 + (1− πg)d̂1.

6 Numerical implementation

6.1 Computing Winsorized moments

Here we describe the computation of the mean ν(dg, d0) and variance φ(dg, d0) of the log Win-
sorized F -distribution. Let Z = log win(f) denote the log-Winsorized F random variable defined
in Section 5.1. The expected value is

ν(dg, d0) = E(Z) = pl log ql + pluE (Z | ql < Z < qu) + pu log qu

with plu = (1− pl − pu). After transforming Z to the unit interval, the conditional expectation
can be re-interpretted as

pluE(Z|ql < Z < qu) = (b− a)E{h(U)}

where U is uniformly distributed on the interval from a = ql/(1 + ql) to b = qu/(1 + qu) and

h(u) = log

(
u

1− u

)
1

(1− u)2
pdf

(
u

1− u

)
where pdf is the probability density function of the F -distribution on dg and d0 degrees of
freedom. The expectation in terms of the uniform random variable can be evaluated efficiently
by Gauss-Legendre quadrature as described below.

Having computed the mean, the variance of Z can be obtained as

φ(dg, d0) = E
{

(Z − ν)2
}

= pl (log ql − ν)2 + pluE
{

(Z − ν)2 | ql < Z < qu
}

+ pu (log qu − ν)2

where ν = ν(dg, d0). The second term containing the conditional expectation can be re-
interpretted as (b− a)E{h(U)} with

h(u) =

{
log

(
u

1− u

)
− ν

}2 1

(1− u)2
pdf

(
u

1− u

)
to permit evaluation by Gauss-Legendre quadrature.

6.2 Evaluating an integral using Gaussian quadrature

The gauss.quad.prob function of the statmod package (Smyth, 2006) implements Gaussian
quadrature strategies for evaluating the expected values of random variables from a selection of
distributions. Consider the random variable h(U) where U follows a uniform disribution on the
interval [a, b]. For any desired order k, gauss.quad.prob computes nodes ui and Gauss-Legendre
weights wi such that

E{h(U)} ≈
k∑

i=1

wih(ui)

The approximation is exact if h(u) can be expressed as a polynomial of order 2k − 1 or less on
the interval [a, b]. The accuracy of Gauss-Legendre quadration is excellent if h(u) is a reasonably
smooth function taking finite values on the interval. The weights and nodes are computed using
an adaption of an algorithm and Fortran code by Golub and Welsch (1969).

All results reported in this article use k = 128 nodes. This was sufficient for close to double-
precision accuracy provided a is bounded above zero and b is bounded below one.
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7 Application to microarray data analysis

Accurate estimation of a series of variances is of great interest in microarray data analysis,
because of the need to conduct t-tests or F -tests, with the genewise variance appearing as the
denominator of the test statistic, for tens of thousands of genes simultaneously.

Microarray technology is applied to a set of independent RNA samples, and yields a measure
of gene activity, known as gene expression, for each known gene in each RNA sample. In the
simplest case, the RNA samples may be divided into two treatment groups, so that a two-sample
t-test is conducted for differential expression for each gene. More generally, a linear model is
fitted to the log-expression values for each gene, leading to genewise coefficient estimates and
genewise residual variances s2g (Smyth, 2004).

Typically the residual degrees of freedom dg are small, so that the sample variance is an
imprecise estimator of the true genewise variance. Smyth (2004) has shown further that, in the
context of a linear regression model for each case g, the posterior variance s̃2g may be inserted in
place of the ordinary sample variance in t-test statistics to obtain empirical Bayes t-statistics.
The empirical Bayes t-statistics follow a t-distribution on dg + d0 degrees of freedom under
the null hypothesis that the regression coefficient is zero. This shows that d0 represents the
information that is “borrowed” from the ensemble of cases to assist with inference about case g.

Accurate estimation of the variances is vital for correctly controlling the false discovery rate.
In many microarray data applications, dg is small and the number of genes G is large, so the
information borrowed is of vital importance. Many studies have shown that the empirical Bayes
t-tests have markedly better power to detect true differential expression than ordinary genewise
t-tests in this context.

Unusually large genewise variances can arise from a variety of technical or biological causes,
including unidentified batch effects or genetically heterogeneous samples. Very small variances
can also arise from technical causes. Outlier variances cause two potential problems in microarray
analysis. The first and most pervasive problem is that outlier variances cause the prior degrees
of freedom d0 to be under-estimated for the majority of genes that are not outliers. This means
that less strength is borrowed between genes. The result is that the empirical Bayes t-tests for
the bulk of genes have less power than they would if the outliers had been absent, being based on
fewer posterior degrees of freedom. The second problem is that a hypervariable gene might be
incorrectly identified as differentially expressed because its variance has been squeezed towards
to global consensus variance, resulting in a t-statistic that is unrealistically large. This potential
problem is partly mitigated by under-estimation of d0.

When we apply robust empirical Bayes to genewise variances from microarray data, we
consider outliers in both tails, that is either unusually large or small variances, when estimating
s20 and d0. However we consider only outliers in the right tail, that is large variances, when
computing πg and d0g. This ensures that very small variances are still squeezed strongly towards
the global estimate when computing empirical Bayes t-tests, to avoid a large t-statistic arising
from a very small fold change but an even smaller variance.

Our robust empirical Bayes strategy addresses both of the problems described above. It
protects against false discoveries from hypervariable genes, while at the same time providing
more degrees of freedom and more statistical power for the empirical Bayes t-tests for the bulk
of genes.
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8 Covariate dependent priors

It is common in microarray experiments for the variance of the log-expression values to de-
pend partly on the magnitude of the expression level. Although background correction and
pre-processing algorithms and transformations are successful in ameliorating the mean-variance
trend in the processed expression values (Huber and others, 2002; Ritchie and others, 2007; Shi
and others, 2010), some trend usually remains (Sartor and others, 2006). Figure 3a shows a
trend between the residual standard deviations and the average log-expression level of each gene
for the example dataset.

It is therefore helpful to extend the empirical Bayes principle to permit the prior variance
s20 to depend on the average log-expression Ag of each gene (Sartor and others, 2006). This
generalizes the prior distribution for σ2g to be gene-specific:

σ2g ∼ s20gχ2
d0/d0

where the s20g vary smoothly with Ag. In other words, the prior distribution depends on the
covariate Ag. Such a strategy is implemented in the eBayes function of the limma package.

Our strategy for robust empirical Bayes with a variance trend is as follows. First we fit a
robust lowess trend (Cleveland, 1979) to log s2g as a function of Ag. We detrend the log s2g by
subtracting this trend, then apply the robust empirical Bayes algorithm described above to the
detrended variances. The final genewise prior values s20g are the product of the unlogged lowess
trend and the s20 estimated from the detrended variances.

9 Simulation study

9.1 Simulation strategy

Simulations were used to benchmark the performance of the proposed method. The simulations
were designed as follows. One thousand datasets each with 10 000 genes were generated. A two
group scenario with a sample size of three for each group was assumed. The hyperparameters
chosen were d0 = (2, 4, 10) and s0 = 0.2. Since the residual degrees of freedom is four, d0 = 2
reflects the situation where there is not much shrinkage to s20, d0 = 4 reflects a balanced design
and d0 = 10 shrinks quite heavily to the prior variance. The true variance σ2g was sampled
from d0s

2
0/χ

2
d0

and the noise signal generated from N(0, σ2g). For simulations with differential
expression, the log fold changes for 5% of the genes were generated from a normal distribution
with mean zero and variance four. For simulations with outliers, 250 sample variances were
generated from a scaled inverse chi-square distribution with degrees of freedom equal to a half.
These replaced a random subset of the sample variances for the generated data. No differen-
tially expressed genes were also outliers. The data was analysed using procedures in the limma
package from Bioconductor. The performance of the non-robust and the robust hyperparameter
estimation was compared. We denote the non-robust method “ebayes” and the robust method
“robust”.

9.2 The robust method does not compromise the accuracy of hyperparameter
estimates when no outliers are present

First datasets were generated as described without any outliers. Figure 1 shows the estimate
of the prior degrees of freedom in panel (a) and the estimate of the prior variance in (b). The
empirical Bayes and robust empirical Bayes methods accurately estimate the hyperparameters.
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Figure 1: Hyperparameter estimation with no differentially expressed genes and no outliers present in
the data. (a) Estimate of the prior degrees of freedom. True values are 2, 4 and 10. (b) Estimate of the
prior variance. True value is 0.04.

Table 1: Comparing the type I error rate of the empirical Bayes and robust empirical Bayes estimation
procedures. Mean type I error rates are reported for 1000 simulations with no differentially expressed
genes and no outliers present in the data. The standard deviation with which the error rate is estimated
ranges from approximately 0.0003 for rates near 0.001 to 0.003 for rates near 0.1 with no sizeable difference
between the robust and ebayes method.

Nominal P-Value
d0 Test method 0.001 0.01 0.05 0.1
2 ebayes 0.0009961 0.0099820 0.0500065 0.0999357

robust 0.0009964 0.0099810 0.0499645 0.0998315
4 ebayes 0.0010082 0.0100249 0.0500806 0.1001226

robust 0.0010131 0.0100381 0.0500599 0.1000470
10 ebayes 0.0010167 0.0100541 0.0501832 0.1000803

robust 0.0010326 0.0100986 0.0502130 0.1000533
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Figure 2: Estimation in the presence of outliers. (a) Estimate of d0. The ebayes method consistently
underestimates the true prior degrees of freedom in the presence of outliers. (b) Estimate of s20. True
value is 0.04. The ebayes method consistently underestimates the true prior variance in the presence of
outliers. (c) Log squared error of the squeezed variance estimate. The robust method results in lower
median logged squared error of the variance.

When d0 = 10, there is slightly more variability in the estimate of d0 for both methods and
the robust method very slightly over-estimates d0. The estimate of the prior variance is slightly
more variable for smaller d0 with both methods and becomes more consistent as d0 increases.
When d0 = 2 the robust method very slightly over-estimates s20. Overall the accuracy of the
robust and non-robust methods are almost identical.

Accurate hyperparameter estimation translates into good error rate control. Table 1 shows
the actual type I error rates for the robust and non-robust method for nominal p-values of 0.001,
0.01, 0.05 and 0.1. Both robust and non-robust methods control the type I error rate correctly.
In summary, there is no penalty in using the robust method to estimate the hyperparameters
when no outliers are present.

9.3 Robust method more accurately estimates the hyperparameters in the
presence of outliers

The median estimate of the prior degrees of freedom and prior variance was recorded for each
of the 1000 datasets. Figure 2a shows that the ebayes method always underestimates the hy-
perparameters in the presence of outliers. This is more severe as the prior degrees of freedom
becomes larger. When d0 = 10, the median ebayes estimate is approximately three. The robust
method slightly under-estimates d0 (median d̂0 = 8.5), however it is a great improvement over
the ebayes estimate. For the prior variance the robust estimate very slightly over-estimates the
true value for all d0. Using ebayes, ŝ20 is always under-estimated. As d0 increases, the estimate
of s20 becomes progressively worse (Figure 2b). The robust method has more accurate estimates
for both of the hyperparameters in the presence of the 250 outliers.

Figure 2c shows the log squared error for the posterior variance estimates for the 1000
simulations in the presence of outliers. It is clear that the robust method has the minimum
log squared error for all values of d0. Using the robust method for calculating the posterior
variances results in better estimates of the true gene-wise variances.
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(b) 250 outliers
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Figure 3: Detection of differential expression. (a) False discovery rate curves for the robust and ebayes
method for each value of d0 with 5% differential expression and no outliers. The ebayes and robust curves
overlap each other. (b) False discovery rate curves for the robust and ebayes method for each value of d0
with 5% differential expression and 250 outliers. Modest improvement of the false discovery rate using
the robust method as d0 increases. (c) The Benjamini and Hochberg adjusted P-values for each method
for every value of d0. The dotted horizontal line represents a 5% threshold. Robust estimation increases
number of genes called differentially expressed at 5% when 250 outliers are spiked into the data.

9.4 Robust estimation does not increase the false discovery rate when no
outliers are present

The simulations were modified to include 5% or 500 differentially expressed genes. No outliers
were simulated. Figure 3a shows the false discovery rate curves for the two methods for each
value of d0. The ebayes and robust false discovery rate curves overlap each other. As d0 increases,
the number of false discoveries decreases in the top 500 genes for both methods. With no outliers
present in the data, the number of false discoveries between the two methods is identical.

9.5 Robust estimation modestly improves the false discovery rate in the pres-
ence of outliers

In this scenario, the simulations were modified to incorporate 500 differentially expressed genes
and 250 outliers generated from a scaled inverse chi-square distribution on half a degree of
freedom. Robust estimation shows a modest improvement on the number of false discoveries,
which becomes more apparent as d0 increases (Figure 3b).

9.6 Robust estimation improves power to detect differential expression in
the presence of outliers

When there are 500 differentially expressed genes and 250 outliers in the simulated data, Figure
3c shows that the robust estimation method results in more genes called differentially expressed
at a 5% Benjamini and Hochberg adjusted p-value cut-off. When d0 = 2, ebayes resulted in an
average of 294 genes over the 1000 simualtions called differentially expressed. The robust method
had a mean of 299 genes identified as differentially expressed. At d0 = 4, the ebayes method had
a mean of 334 genes called differentially expressed and with robust estimation a mean of 350
genes were identified as differentially expressed. When d0 = 10, ebayes had an average of 355
genes differentially expressed and robust had an average of 386 genes identified as differentially
expressed. The difference in the power between ebayes and robust is more marked at higher
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prior degrees of freedom, although at every level of d0 the robust estimation procedure resulted
in more genes being identified at significantly differentially expressed without an increase in the
number of false discoveries (Figure 3b).

10 Case study: loss of polycomb repressor complex 2 function
in pro B cells

Polycomb group proteins are transcriptional repressors that play a central role in the estab-
lishment and maintenance of gene expression patterns during development. Suz12 is a core
component of Polycomb Repressive Complex 2 (PRC2). Majewski and others (2008) and Ma-
jewski and others (2010) studied mice with a mutation in the Suz12 gene that results in loss of
function of the Suz12 protein and hence PRC2. They profiled gene expression in hematopoietic
stem cells from these mice. Here we describe a gene expression study of a different hematopoietic
cell type from the same Suz12 mutant mice strain. This study profiles gene expression in pro-B
cells, an early progenitor immune cell intermediate in a series of development stages between
hematopoietic stem cells and mature B-cells.

Our interest is to study development, so cells were isolated from 16-day embryonic mice. For
this study RNA, was extracted from foetal pro B cells that were isolated from the liver of four
wild-type mice and four Suz12 mutant mice. RNA was hybridized at the Australian Genome Re-
search Facility to Illumina Mouse Whole-Genome-6 version 2 BeadChips, a microarray platform
containing about 48,000 60-mer DNA sequences probing most genes in the genome. Summary
probe intensity profiles were exported from GenomeStudio and analysed using the limma soft-
ware package version 3.17.13 (Smyth, 2005) in R. Intensities were background corrected, quantile
normalised and transformed to the log2-scale using the neqc function (Shi and others, 2010).
One of the Suz12 mutant samples was discarded because it clustered with the wildtype instead
of the Suz12 samples, leaving four wildtype and three Suz12 mutant samples. Probes were
filtered from further analysis if they failed to achieve a detection p-value of less than 0.01 in at
least two of the remaining samples. This left 14084 probes for analysis.

Linear modelling was applied to normalized log-expression values, resulting in a residual
sample variance on 5 residual degrees of freedom for each probe. Figure 4 shows the square-root
sample standard deviations plotted against the average log intensity for each probe. The grey

curve shows the estimated trend for the prior variance s
1/2
0 . The non-robust estimate of the

prior degrees of freedom was 11.9. The robust algorithm identified a number of outlier variances
marked on Figure 4a. The robust algorithm estimated prior degrees of freedom 14.1 for most
genes, but with prior degrees of freedom as low as 0.5 for the outlier variances (Figure 4b).

Further examination showed that many of the probes identified as outliers corresponded to
genes known to have sex-linked expression, including many on the X or Y chromosomes (Figure
4a). The most outlying variances corresponded to Y chromosome genes Erdr1 and Eif2s3y up-
regulated in males, and X chromosome gene Xist, known to be up-regulated in females. Other
outliers gene were ribosomal genes Rn18s and Rpl7a, suggesting ribosomal RNA contamination
in one or more samples, and hemoglobin genes Hbb-y and Hbb-b1 suggesting red blood or bone
marrow content in some tissue samples. None of these genes should be related to the Suz12
mutation.

Differential expression between the Suz12 mutants and the wildtype mice was assessed using
empirical Bayes moderated t-statistics. The p-values were adjusted to control the false discovery
rate at less than 5% (Benjamini and Hochberg, 1995). The non-robust and robust procedures
found 251 down-regulated and 35 up-regulated probes in common (Figure 5). However 22 and
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Figure 4: The quarter root sample variance is plotted against the average log intensity for each gene.
(a) The grey line shows the estimate of the prior variance. In this case there is a trend on s20. The
chromosomes of the larger observations are shown. Many of the genes with larger variability come from
the X and Y chromosome, indicating there may be a sex factor in this data that we are not aware of. (b)
The coloured points show the binned estimate of the prior degrees of freedom. The points with larger
sample variances have smaller d̂0g.

ebayes robust

14031

810 35

up
13795

2216 251

down

Figure 5: Venn diagram showing overlap of significant genes for Suz12 versus wildtype found using
ebayes and robust methods. Genes found significant using ebayes but not robust tend to be sex linked
genes. Additional genes found by robust are biologically relevant and include Bcl2l1, Ccne2 and Myst2.
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16 down-regulated genes were found only by the robust or non-robust procedures respectively.
The non-robust unique genes tended to be sex-linked or hemoglobin related (Xist, Apoa2, Hbb-b1
etc) whereas the robust unique genes were related to programmed cell death (Bcl2l1 ), cell cylce
(Ccne2 ) or chromatin remodelling (Myst2 ). For up-regulated genes, 8 and 10 unique probes
were found by the robust and non-robust procedures respectively. The non-robust unique genes
tended to be Y chromosome sex-linked genes (Ddx2y, Erdr1 etc) whereas the robust unique
genes appeared related to the PRC2 process of interest.

Further investigation confirmed that two of the Suz12 mutant embryos were in fact female,
whereas all the other mice were male. This was an unwanted complication in the experiment,
difficult to avoid without sex-typing of the embryo mice at the time of tissue collection. The
results show that the robust empirical Bayes method was successful in identifying and down-
weighting genes that are associated with the hidden covariate. The robust procedure results in
more statistical power to detect other genes that are more likely to be of scientific significance.

11 Discussion

We have developed a method that robustly estimates the hyperparameters of the conjugate
empirical Bayes model for variances and negates the effects of outliers. The simulation stud-
ies showed that when no outliers and no differentially expressed genes were present the robust
method controlled the type I error rate correctly. The robust method also accurately estimated
the hyperparameters, showing no negative effects when no outliers were present. When 500 dif-
ferentially expressed genes were introduced into the simulations, the false discovery rate between
the two methods was identical.

Introducing 250 outlier sample variances as well as the 500 differentially expressed genes
showed that the non-robust method lost power and could not estimate the hyperparameters
correctly. Using robust estimation showed a small improvement in terms of numbers of false
discoveries. The main improvement was to the Benjamini and Hochberg adjusted p-values, par-
ticularly as d0 became larger. More genes were identified as significantly differentially expressed
at a 5% cut-off using the robust method compared to the non-robust method. This was due to
the robust method more accurately estimating the hyperparameters and hence performing the
correct amount of shrinkage. The posterior variances evaluated using the robust estimates more
accurately reflected the true variances.

We applied the robust hyperparameter estimation to a polycomb repressor complexes mi-
croarray dataset using pro-B cell samples. We showed that the robust method correctly identified
hypervariable genes associated with an unwanted covariate and with other technical variations
between the RNA samples.

12 Software

The robust method for estimating the hyperparameters is freely available in the limma software
package (Smyth, 2005; Smyth and others, 2013) available from the Bioconductor repository. The
method can be used as part of standard limma analysis pipeline by using the option robust=TRUE

when calling the eBayes function.

15



Acknowledgments

BP was supported by a PhD scholarship from Science Faculty of The University of Melbourne.
GKS was supported by a Research Fellowship from the National Health and Medical Research
Council.

References

Benjamini, Y and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and
powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B 57,
289–300.

Berger, J. (1982). Bayesian robustness and the Stein effect. Journal of the American Statistical
Association 77(378), 358–368.

Berger, J and Berliner, L. M. (1986). Robust Bayes and empirical Bayes analysis with
ε-contaminated priors. The Annals of Statistics 14(2), 461–486.

Brent, R. P. (1973). Algorithms for minimization without derivatives. Courier Dover Publi-
cations.

Broberg, P. (2003). Statistical methods for ranking differentially expressed genes. Genome
Biology 4, R41.

Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots.
Journal of the American statistical association 74(368), 829–836.

Dozmorov, I, Knowlton, N, Tang, Y, Shields, A, Pathipvanich, P, Jarvis, J. N and
Centola, M. (2004). Hypervariable genes—experimental error or hidden dynamics. Nucleic
acids research 32(19), e147–e147.

Efron, B. (2003). Robbins, empirical Bayes and microarrays. The Annals of Statistics 31(2),
366–378.

Efron, B. (2010). The future of indirect evidence. Statistical science: a review journal of the
Institute of Mathematical Statistics 25(2), 145.

Efron, B and Morris, C. (1971). Limiting the risk of Bayes and empirical Bayes estimators—
part I: the Bayes case. Journal of the American Statistical Association 66(336), 807–815.

Efron, B and Morris, C. (1972). Limiting the risk of Bayes and empirical Bayes estimators—
part II: The empirical Bayes case. Journal of the American Statistical Association 67(337),
130–139.

Efron, B and Morris, C. (1973). Stein’s estimation rule and its competitors—an empirical
Bayes approach. Journal of the American Statistical Association 68(341), 117–130.

Efron, B and Morris, C. (1975). Data analysis using Stein’s estimator and its generalizations.
Journal of the American Statistical Association 70(350), 311–319.

Efron, B and Morris, C. (1977). Stein’s paradox in statistics. Scientific American 236(5),
119–127.

16



Fisher, R. A, Corbet, A. S and Williams, C. B. (1943). The relation between the number
of species and the number of individuals in a random sample of an animal population. The
Journal of Animal Ecology 12(1), 42–58.

Golub, G. H and Welsch, J. H. (1969). Calculation of Gauss quadrature rules. Mathematics
of Computation 23(106), 221–230.

Gottardo, R, Raftery, A. E, Yee Yeung, K and Bumgarner, R. E. (2006). Bayesian
robust inference for differential gene expression in microarrays with multiple samples. Bio-
metrics 62(1), 10–18.
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