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Abstract

This paper considers double generalized linear models, which allow the mean and dis-
persion to be modelled simultaneously in a generalized linear model context. Estimation of
the dispersion parameters is based on a x? approximation to the unit deviances, and the
accuracy of the saddle-point approximation which underlies this is discussed. Approximate
REML methods are developed for estimation of the dispersion, and these are related to
the likelihood adjustment methods of McCullagh and Tibshirani (1990) and Cox and Reid
(1987). The approximate REML methods can be implemented with very little added com-
plication in a generalized linear model setting by adjusting the working vector and working
weights. S-Plus functions for double generalized linear models are described. Through
two data examples it is shown that the approximate REML methods are more robust than
maximum likelihood, in the sense of being less sensitive to perturbations in the mean model.

Keywords: dispersion modelling; REML; generalized linear models; slippage models; ad-
justed profile likelihood

1 Introduction

Generalized linear models allow us to model responses which are not normally distributed,
using methods closely analogous to normal linear methods for normal data (McCullagh and
Nelder, 1989). They are more general than normal linear methods in that a mean-variance
relationship appropriate for the data can be accommodated and in that an appropriate scale can
be chosen for modelling the mean on which the action of the covariates is approximately linear.
On the other hand, once the mean-variance relationship is specified, the variance is assumed
known up to a constant of proportionality, the dispersion parameter. While generalized linear
models continue to be extremely useful, the complexities often encountered in observed data
and the possibilities opened by modern computing power ensure that there is a strong need
now for even more flexible models. Modern requirements are for models which include random
effects, non-parametric trends and non-homogenous dispersion. A comprehensive attack on
many real problems in biomedical or environmental research would involve an integration of
these and other components. In this paper we concentrate on non-homogeneous dispersion and
the modelling of dispersion in terms in covariates.

*This paper is in Honor of Professor Tan B. MacNeill.



It is well known that efficient estimation of mean parameters in regression depend on correct
modelling of the dispersion. The loss of efficiency in using constant dispersion models when
the dispersion is varying may be substantial. Modelling of the dispersion is also necessary to
obtain correct standard errors and confidence intervals, as well as for many other applications
such as prediction, estimation of detection limits or immunoassay (Carroll, 1987; Carroll and
Rupert, 1988). In many studies, modelling the dispersion will be of direct interest in its own
right, to identify the sources of variability in the observations.

Many authors have considered dispersion modelling for normal data, for example Aitkin
(1987), Carroll (1987), Davidian and Carroll (1987), Carroll and Rupert, (1988). Smyth (1989)
showed that similar methods could be used for a certain class of non-normal generalized linear
models. In this paper we extend Smyth’s (1989) methods to arbitrary generalized linear models
by using the saddle-point approximation to the distribution of the responses.

Before dispersion modelling can take place, it is necessary to estimate the mean of the data
accurately. For this reason, dispersion modelling takes place in the presence of a (possibly
large) number of nuisance parameters. It is well known that maximum likelihood estimators
for variance parameters in regression models are generally biased. For normal linear models
it is common to use residual or restricted maximum likelihood (REML) instead of maximum
likelihood to estimate parameters affecting the variances. REML maximizes the likelihood, not
of the original observations, but of a set of zero mean contrasts. This has the effect of adjusting
for available degrees of freedom, and produces estimators which are at least approximately
unbiased.

The generalization of REML to non-normal models is not obvious, as zero mean contrasts
do not generally exist. Several general methods of adjusting likelihood methods for nuisance
parameters have been proposed, including Cox and Reid (1987), McCullagh and Tibshirani
(1990) and Smyth and Verbyla (1996), which reduce to REML for normal linear models. In this
paper we use the approach of McCullagh and Tibshirani (1990) to adjust the score vector and
information matrices for leverage effects. We find that this requires minimal modification to the
standard computations in a generalized linear model context. We note that the adjustments
agree with Cox and Reid (1987) to second order, but not with the saddle-point conditional
likelihood given by Smyth and Verbyla (1996).

Verbyla (1993) shows that REML estimators in normal linear regression enjoy a hitherto
unappreciated robustness property, of being less sensitive than the maximum likelihood esti-
mators to perturbations in the model. This property supports the notion that REML can
be considered more reliable than maximum likelihood in small samples. We show, through
two data examples, that our adjusted likelihood methods also enjoy this property in this more
general context.

Section 2 of this paper introduces double generalized linear models, in which the mean and
the dispersion are modelled simultaneously. The saddle-point approximation and its accuracy is
discusses in Section 3. Section 4 discusses generalizations of REML to non-normal models. The
application to double generalized linear models is set out in Section 5, and two data examples
are worked through in Section 6. S-Plus functions to fit double generalized linear models are
also described. The paper finishes with a summary and pointers to software availability.

2 Double Generalized Linear Models

Suppose we observe independent responses y;, ¢ = 1,...,n, together with covariate vectors x;
and z;, and possibly unequal weights w;. Generalized linear models assume that the density of



y; can be written in the form
Sy pi, d/wi) = aly, ¢/w) eXp[%{yQi — k(0:)}]

for suitable functions x and a (McCullagh and Nelder, 1989). Here p; = E(y;) = £(6;), and
vary; = (¢/w;)V (w;), where V(u;) = £(6;) is a known function. The function V' is called the
variance function, and captures the mean-variance relationship for the data. The dispersion
parameter, ¢, can be interpreted as the variability in y; once dependence of the variance on the
mean and weights has been taken into account.

Following Jorgensen (1987, 1997), we say that y; follows an exponential dispersion model
with mean p; and dispersion ¢/w;, and write y; ~ ED(u;, ¢/w;). At first sight, its seems
somewhat restrictive to assume such a specific distributional form for y. However Jgrgensen
(1987) showed that k can be any moment generating function, i.e., any distribution with a well
defined moment generating function belongs to an exponential dispersion model.

Double generalized linear models provide a framework for modelling the dispersion in gen-
eralized linear models as well as the mean (Smyth, 1989). We assume that y; ~ ED(u;, ¢i/w;).
Generalized linear models traditionally assume that the means p; can be modelled via link-linear

relationship
T

9(mi) =x%; B
where ¢ is a known link function and 3 is a vector of unknown regression coefficients. Double
generalized linear models assume a second link-linear predictor for the dispersion

h(¢i) =z, A

where h is another known link function, and z; is a vector of covariates affecting the dispersion.
In principle, u; and ¢; could be quite general functions of 3 and A, and could even include non-
parametric trend terms. For simplicity however, we concentrate on the traditional link-linear
relationships in this paper.

3 Estimation

3.1 The Dispersion Submodel

For our purposes it is more informative to re-write the density of y; in the form

£ ;1. 68) = by, 6) exp{—;aﬁdw,u)} (1)

where d is a distance measure between y and p. For most distributions of interest, d can be
obtained as d(y, p) = 2wi{t(y,y) — t(y,pn)} where t(y,n) = yd — £(0). For normal data, d is
the squared residual w;(y — p;)? and ¢ is the variance. The family of densities defined by (1)
for different d has been intensively studied by Jorgensen (1997), and is in a sense the most
general distributional form for y for which p can be interpreted as a location parameter and ¢
as a dispersion parameter. The saddle-point approximation to the exponential dispersion model
states that b(y, @) ~ {27¢V (y)} /2 as ¢ — 0, the relative error being O(¢) (Jorgensen, 1997,
page 103). This is appreciably more accurate than the normal approximation to the density
f(y; 1, @), which has additive error of O(¢'/?) (Barndorff-Nielsen and Cox, 1989).

Write d; = d(yi, pi) for the directed distance between y; and its mean. Direct computation
of the moment generating function by integrating exp d(y;, ;) times the saddle-point density



Table 1: The dispersion submodel, used to estimate A for fixed 3.

Component Value
Response d;
Mean o
Variance function Vy(¢) = ¢2
Link function h
Dispersion 2

shows that d; ~ ¢;x?3 approximately as ¢; — 0, the convergence being O(¢;). Since the x?
distribution is a special case of the gamma distribution, this suggests an iterative scheme for
estimating 3 and A simultaneously. Given any working value for A, we can estimate 3 using an
ordinary generalized model for the y; with weights w;/¢;. Given any working value for 3, we can
estimate A\ using a gamma generalized linear model for the d;. We call the gamma generalized
linear model, used to estimate X for fixed 3, the dispersion submodel. The dispersion submodel
has its own dispersion, parameter, which is 2. This and other components of the dispersion
submodel are set out in Table 1. Smyth (1989, see also 1996) shows that this estimation scheme,
which alternates between estimating 3 for fixed A and A for fixed 3, works particularly well
because B and A are orthogonal parameters.

3.2 Accuracy of the Saddle-Point Approximation

The saddle-point approximation which underlies the dispersion submodel is fundamental for
generalized linear model theory. Apart from supporting the estimation scheme above, it is
this theorem which asserts that the deviance residuals should be approximately normal, and
that the residual deviance should follow approximately a chisquare distribution on the residual
degrees of freedom (Jgrgensen, 1997). It is therefore of considerable interest to obtain reliable
guidelines regarding the accuracy of the approximation.

The saddle-point approximation is exact when the y; are normal or inverse-Gaussian. In
these cases the unit deviances d; are exactly ¢;x?. In other cases we use the following rule of
thumb to judge the accuracy of the approximation. Let

¢iV (i)
(y; — boundary)?

T =

where “boundary” represents the boundary of the support of y. For a gamma or Poisson
distribution, the only boundary is at zero. For a binomial distribution with n trials, there are
boundaries at zero and n. In the definition of 7;, we take the closest boundary to y;. We will
take the saddle-point approximation to be satisfactory when 7; < 1/3 for all i. When this
condition in satisfied we have good reason to treat the deviance residuals as normal and to use
the dispersion submodel outlined in Table 1.

This rule of thumb has both heuristic and theoretical justifications. We describe the heuristic
first. It is well known that unimodal distributions are often approximately normal when the
mean is more than two or three standard deviations from the boundary of the distribution.
This rule works well for the binomial and Poisson distributions for example. Knowing that the
accuracy of the saddle-point approximation depends on y and ¢ but not on u, we consider a
distribution with mean equal to the observed response y. Then ,/7; measures the number of
standard deviations separating the mean from the boundary of the distribution. Since \/7; < 1/3
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would usually be sufficient for normality, and since the saddle-point error is of the order of the
normal approximation error squared, we take 7; < 1/3 as the cutoff.

The theoretical justification applies to generalized linear models with power variance func-
tions, V(y) = p? for some p. For p > 1 the only boundary is at zero, and 7; = qbiyf*Q is
the squared coefficient of variation. Following Jgrgensen (1997), we call the distributions with
power variance functions Tweedie models, in honor of Tweedie (1984). This family includes
many distributions of interest, including the normal, Poisson, gamma and inverse-Gaussian
distributions. For Tweedie models with p > 1, it can be shown that the relative error of the
saddle-point approximation to f(y; p, ¢) is in fact a non-decreasing function of 7. For the gamma
distribution for example, the saddle-point approximation consists of replacing I'(1/¢;) with its
Stirling’s formula approximation. In this case 7, = ¢; < 1/3 ensures that the saddle-point
relative error is less than 2.8%. For the Poisson distribution, the saddle-point approximation
replaces y;! with Stirling’s formula. In this case 7; = 1/y; < 1/3 ensures that the relative error
is again less than 2.8%.

The binomial distribution is the most important example which does not belong to the
Tweedie family. In this case 7; < 1/3 essentially requires that y > 3 and n —y > 3, which
insures that the saddle-point approximation is at worst accurate to 4%.

When the y; are gamma, the saddle-point approximation is not exact but can be modified
to obtain exact results, as was shown by Smyth (1989). In that case the d; follow exactly a
digamma distribution, and the mean and variance function of the dispersion submodel can be
modified to obtain exact maximum likelihood results. We neglect this refinement in this paper,
as it is important only for gamma responses with moderate to large ¢;. Computer programs
referred to in this paper however do compute the refinement when it is available.

4 Likelihood Adjustments

Consider the weighted normal linear regression model,
y ~ N(XB,0%V)

where X is of rank k£ and matrix of weights V' is known. Write B for the maximum likelihood
estimator of 3. For this model the REML estimator of o2 is the generally accepted estimator

R 1 T — A

&= ——(y-XB)'V 'y - XB),
n—=k

which divides the residual sum of squares by the residual degrees of freedom. (The maximum

likelihood estimator has n in place of n — k, and is a biased estimator.) For a general weighted

normal linear model,

y ~ N(XB,E(N)) (2)

with X depending on a vector A of unknown parameters, the REML method is to estimate A
from the distribution of the fitted residuals. Let @ be any n x (n — k) matrix of rank n — k
orthogonal to X. Then @ spans the residual space of the linear model. REML estimation
maximizes the likelihood of QTy instead of that of y, i.e.,

Q"y ~ N(0,Q"2Q)

This leads to an approximately unbiased estimator for A, and one which may be consistent even
if k£ increases at the same rate as n. Estimation of X is not affected by the specific choice of Q).



It is not obvious how the idea of REML can be extended to non-normal or non-linear
models, because in general mean zero contrasts, such as those which make up the columns
of ), do not exist. There are however a number of general strategies designed to deal with
nuisance parameters which agree with REML for normal linear models. In the general setting,
we consider a log-likelihood function ¢(y; 8, A) = log L(y; 3,A). We wish to estimate A in the
presence of the vector 3 of nuisance parameters.

Firstly, if we could specify completely priors for all the parameters, then inference for A
would proceed through the marginal posterior distribution for A. The posterior distribution for

the parameters is
p(B,Aly) = L(y; B: Mp(B; N)
p(y)

where p(8, ) is the joint prior of 8 and A, and p(y) is the marginal distribution of y. The
marginal posterior distribution for A alone is obtained by integrating out the nuisance param-
eters,

p(Aly) = /p(ﬁ, Aly)ds

In the normal linear model (2), the posterior density p(Aly) is proportional to the REML
likelihood if the prior for 8 and A is flat in the neighborhood of interest (Harville, 1974). This
shows that REML can be viewed as the Bayesian principle of marginal inference.

In many cases, for example when priors are not available, we want to base inference entirely
on the likelihood function. Let ,BA be the maximum likelihood estimator of 8 for a given
fixed value of A. The profile log-likelihood for A is {(y; B s A). A number of methods have
been proposed for modifying the profile log-likelihood to reduce its dependence on (3. These
involve conditioning on a suitable statistic, such as ,3/\, which is asymptotically sufficient for
B. Fundamental work on modified profile likelihoods is by Barndorff-Nielsen (1983). See also
Barndorff-Nielsen (1985, 1988), Barndorff-Nielsen and McCullagh (1993) and Barndorff-Nielsen
and Cox (1994). Cox and Reid (1987) proposed a simplification of Barndorff-Nielsen’s modified
profile likelihood, which is applicable when 3 and A are orthogonal. Cox and Reid’s approximate
conditional log-likelihood is

N 1 N
LBy, A) — ) log \jﬁ(ﬂm A)l

where J3 is the observed information matrix for 3. This reduces to the REML log-likelihood
for normal linear models.

Smyth and Verbyla (1996) proposed an exact conditional likelihood for generalized linear
models with canonical links. In this approach, estimation of A is based on the likelihood of
y given XTQ~ly with Q = diag(¢;/w;). For these models XTQ ™y is sufficient for 3 given
A. This approach entirely removes dependence of the profile likelihood on B. While this
approach is also equivalent to REML for normal linear models, it is applicable only to special
case generalized linear models, and is not pursued further in this paper.

A third strategy is to directly correct the profile score function for non-zero expectation
(McCullagh and Tibshirani, 1990). Let

ol +
— =
U(B.A) = B (BrA)
An approximately unbiased estimator of A can be obtained from the estimating equation
ol » -
a(ﬁ,\)\) —U(B;A) =0

Again, this approach leads to REML for the normal linear model.



5 Approximate REML for Double GLMs

Standard generalized linear model theory tells us that, for fixed A, maximum likelihood esti-
mators of 3 can be obtained by solving the weighted least squares equation

XTW,, X8 = XT"W,zm (3)

repeatedly, where W, is a diagonal matrix of working weights

Wy, = diag (M)

and z,, is the vector of working responses ¢(u;)(y; — i) + g(ui). At each iteration, the weight
matrix W,, and working vector z,, are updated, and the equation is solved again for 8. This
is known as iteratively reweighted least squares.

A similar weighted least squares equation exists for maximum likelihood estimator of A
given 3, namely

ZT"WyZX = ZT"Wyzy (4)

where

W,y = diag <1>
h(b:)*Va(¢i)
and zg; = h(¢i)(di — ¢i) + h(¢;). Full maximum likelihood estimation for all parameters can
be obtain by alternating between of the iteration for 3 and the iteration for A until overall
convergence is obtained (Smyth, 1989 and 1996).
The least squares equation (3) for 8 has “Hat matrix”

H=wVX(XTW,,X)"' xTw}/2

We will write h; for the diagonal elements of H, often known as leverages. By expanding B
about 3 in a Taylor series expansion, it can be shown that

E{d(ys, )} = ¢i(1 = hi) + O(n™?) ()

where [i; is p; evaluated at B \- Here we are assuming the Fisher information increases at the
same rate as the sample size n, i.e., the minimum eigenvalue of X7 W,,, X is O(n) as n increases.
The result is even more accurate in the case that the generalized linear model uses a canonical
link, for example reciprocal for the gamma distribution. In that case, the error in (5) is O(n=3).
In the special case of linear regression, (5) agrees with the well known result that

E{(yi — )’} = 0*(1 — hy)

where o2 is the variance of the y;. This suggests that we modify the working vector in the
dispersion submodel from that given in the previous paragraph to to zj, = h(gbl){dZ - (1-
hi)éi} + h($i). An approximately unbiased estimator of A can be obtained by solving (4) with
z,; in place of z.

It is interesting to note that differentiating the Cox and Reid (1987) approximate conditional
likelihood can also be shown to lead to (5). However the saddle-point approximate conditional
likelihood given by Smyth and Verbyla (1996) gives a different but related expression, which
collapses to (5) in the normal case.



Considerable further computation with Taylor series expansions also leads to an expression
for the variance of d(y;, fi;), from which an expression for the variance of the adjusted A can be
obtained as in McCullagh and Tibshirani (1990). This leads to

var(A) &~ 7\
with )
Ty = §ZTW§‘Z
and
. hz‘ 2
W7 =Wy — 2diag () +H
¢7h (i)

Here H? represents the matrix (hfj) where h;; are the elements of the hat matrix H. (Note
also that h(¢) represents the dispersion link function, which is unrelated to H and the h;.)

This gives a very straightforward scheme for converting maximum likelihood estimation for
A to approximate REML. In the iteratively reweighted least squares update (4) for A, we simply
change z4 to z; = (z5,...,25,)T and the weight matrix W, to W;. This will ensure not only
that the estimator A is approximately unbiased, but also that the dispersion submodel will give
correct adjusted standard errors. In practice the matrix H? is expensive to calculate, so we
approximate it with diag(h?). This gives

W3 ~ W, — 2diag ( hi | h2>
a = Wa— 5 g T
G
In many practical examples the dispersion link £ is logarithmic. In that case, the expression
for W, simplifies considerably. Using h(¢) = 1/¢; and Vy(¢;) = ¢7 we have W ~ diag(1 — h?).

6 Diagnostics and Examples

It is well known that REML estimation leads to estimators for the variance parameters which
are more nearly unbiased than does maximum likelihood estimation. It is less well known that
REML estimators are also more robust, in the sense of being less sensitive to perturbations of
the data (Verbyla, 1993). This arises because of the allowance for effective degrees of freedom
in the mean model. The REML estimators are less likely to follow an aberrant fitted value
with a very high leverage value. In this section we show, through two data examples, that our
approximate REML method also shares this property. While we demonstrate the principle for
these two examples only, the robustness of the approximate REML likelihood to changes in
the mean model can be expected to hold generally, because of the relationship of approximate
REML with marginal likelihood. The likelihood must be, by definition, lower at the REML
estimators than it is at the ML estimators. At the same time, the likelihood as the mean
varies from the REML estimators must be greater than that as the mean varies from the ML
estimators, since the likelihood integrated over all the mean values must be greater at the REML
estimators. It follows that the maximum occurs at a relatively sharp peak of the likelihood,
while the REML estimator is associated with a flatter plateau of high likelihood values.

The sensitivity of the REML estimators is investigated in this paper using the mean slippage
or shift outlier model. The slippage model for an outlier at observation j is

g(ui) =xI'B+Cej, i=1,...,n

This perturbation of the mean model has the effect of introducing a unit leverage for the jth
case.
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Figure 1: The sample mean-variance relationship for the poison experiment.

6.1 Poison Experiment

Box and Cox (1964) describe an experiment involving 3 poisons and 4 treatments or antidotes.
The experiment was conducted as a 3 x4 factorial experiment with 4 replicates, and the response
is the survival times of the animals.

A plot of the log-sample variance against log-sample mean for each poison-treatment com-
bination gives a nearly linear trend with slope nearly equal to 4 (Figure 1). This strongly
suggests V(i) = p*. The approximate variance stabilizing transformation for this power vari-
ance function is the reciprocal transformation, and Box and Cox (1964) for this reason treated
the reciprocal times as normally distributed. An alternative approach is to directly analyze the
survival times using a generalized linear model with variance function V (u) = p*.

Figure 2 shows the normal probability plot of the residuals from fitting a two-way interaction
model with reciprocal normal times. Figure 3 shows the normal probability plot of the residuals
from a Tweedie generalized linear model for the survival times with power variance function
V(p) = p*. In this case the maximum value of 7 = qgﬂ;l_2 is 0.15, so we can be confident
that the deviance residuals from the generalized linear model should be approximately normal.
The reciprocal normal probability plot shows slight skewness to the right. The power variance
function probability plot shows slight left skewness. Overall we feel that the probability plot for
the power variance function is at least as satisfactory as that for the reciprocal normal model,
and we proceed to analyze the data using this approach. This has the advantage of directly
analyzing the observed responses on their own scale.

To fit a generalized linear model with power variance function, we use the S-Plus family
function tweedie, written by one of the authors, which is available from the URL listed at the
end of the paper. The command for fitting the quartic Tweedie generalized linear model is

glm(Time ~ Poison*Treatment,
family=tweedie(var.power=4,link.power=0))

Here var.power = p specifies the mean variance relationship V(u) = p? and link.power = q
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Figure 2: Poison experiment with reciprocal normal survival times: normal probability plot of
the residuals.
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Figure 3: Poison experiment with quartic variance function: normal probability plot of the
residuals.
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Figure 4: Displacements of the dispersion coefficient under mean slippage models for the Poison
experiment.

specifies a power link function, uf = x!'B, with ¢ = 0 indicating the logarithmic link.
A double generalized linear model is fitted using the S-Plus function dglm, for example

out <- dglm(TimeNPoison*Treatment ,~Poison,
family=tweedie(var.power=4,link.power=0) ,method="reml")

Here the first argument specifies a model formula for the mean submodel, and the second
argument does the same for the dispersion submodel. Maximum likelihood estimation or ap-
proximate REML may be chosen through the method argument. The function dglm produces
an object of class “dglm”. There are special summary and anova methods written for the class.
For example summary (out) will print estimated regression coefficients, standard errors and the
overall likelihood for the fitted model, while anova(out) will print a table of likelihood ratio
tests for the mean and dispersion submodels. Full programs and help file are available from the
WWW site listed at the end of this paper.

In S terminology, the object class dglm is constructed so that it inherits from the classes
“lm” and “glm”. This means that any S-Plus function designed for linear models (Im ob-
jects) or generalized linear models (glm objects) can be applied to a dglm object with sen-
sible results. Generic functions with methods for glm objects, such as residuals(out), and
functions with method for lm objects, such as dropl(out), will produce results for the mean
submodel. To treat the dispersion submodel as an ordinary generalized linear model, use
residuals (out$disp), dropl(out$disp) and so on.

For this data we find no mean model interaction between Poison and Treatment. In the
dispersion model, we do find a main effect for Poison. The estimated dispersion for Poison 2 is
nearly three times as large as those for Poisons 1 and 3. The contrast for Poison 2 versus the
average of the other two log-dispersions has a log-likelihood ratio test statistic of 5.96, which
has P-value of 0.015 as a chi-square random variable on one degree of freedom. This is similar
to the result found by Aitkin (1987), treating the survival times as reciprocal normal.
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Figure 5: Log-blood CPK concentration versus age for skiers in a cross-country marathon.

We now examine displacement of the dispersion parameter in response to mean slippage
models. We fit the mean model Time ~ Poison+Treatment and the dispersion model ~
Poison2, where Poison?2 is the factor distinguishing the second poison from poisons 1 and
3. We compute the change in the coefficient for Poison2 under slippage models, i.e., as the
indicator vector e; for case j is added to the mean model. The results are given in Figure 4.
We see that the larger displacements are all reduced for REML estimation compared with ML
estimation. This shows that the REML estimation of the dispersion model is less sensitive to
perturbations of the mean model than is maximum likelihood estimation.

6.2 Blood CPK in Skiers

The data gives the blood CPK concentrations of skiers 12 hours into a cross country ski
marathon (Zuliani et al, 1983). Leakage of the enzyme CPK into the blood is a common
symptom of muscle stress. Figure 5 relates log-CPK concentrations to the age of each skier.
This shows an approximately linear decreasing trend, and also decreasing variability, as age in-
creases. Attempts to stabilize the variance by using a stronger transformation than logarithmic
are unattractive because the relatively low observation for one skier of age 33 tends to become
an outlier. Instead, we model the blood CPK concentrations directly as gamma with a log-link.
The following is summary output from the function dglm.

Call: dglm(formula = CPK ~ Age, dformula = ~ Age,
family = tweedie(var.power = 2, link.power = 0), method = "reml")

Mean Coefficients:
Value Std. Error t value
(Intercept) 6.88658455 0.310400523 22.186124
Age -0.01902809 0.006193807 -3.072115
(Dispersion Parameters for Tweedie family estimated as below )
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Scaled Null Deviance: 26.42384 on 17 degrees of freedom
Scaled Residual Deviance: 16.20617 on 16 degrees of freedom

Dispersion Coefficients:
Value Std. Error t value
(Intercept) 0.41601037 1.09056097 0.3814646
Age -0.06333238 0.02855352 -2.2180238
(Dispersion Parameter for Digamma family taken to be 2 )

Scaled Null Deviance: 66.08189 on 17 degrees of freedom
Scaled Residual Deviance: 54.391 on 16 degrees of freedom

Minus Twice the Log-Likelihood: 248.676
Number of Alternating Iterations: 11

The output shows the REML t-value for Age in the dispersion model as —2.2, which has P-value
0.028 as an approximate standard normal random variable. The fitted model for the dispersion
is

log ¢; = 0.416 — 0.0633Age

which means that the dispersion decreases from 0.46 at age 19 to 0.03 at age 62. The estimated
response standard deviation <Z>,L1 / 2/11- decreases by 89% from age 19 to age 62.

We can also obtain the likelihood ratio test statistic for the dependence on the dispersion
on Age can be found by fitting models by ML with and without Age in the dispersion model,
or by using the anova function:

> out <- dglm(CPK~Age, Age,family=Gamma(link="1log") ,method="ml")
> anova(out)
Analysis of Deviance Table

Gamma double generalized linear model
Response: CPK

DF Seq.Chisq P Adj.Chisq P
Mean model 1 6.183280 0.01289630 9.162064 0.00247084
Dispersion model 1 6.043522 0.01395741 6.043522 0.01395741

The likelihood ratio test statistic is 6.04 with P-value 0.014.

Results for the displacement of the coefficient for Age in the dispersion submodel under
mean slippage models are given in Figure 6. Again we see that the larger displacements are
reduced under REML compared with ML.

7 Summary

We have developed an approximate REML strategy for double generalized linear models, which
can be implemented using generalized linear models with adjusted working vectors and weights.
Calculations used the strategy of McCullagh and Tibshirani (1990), and are in agreement with
Cox and Reid’s (1987) approximate conditional likelihood to second order. The strategy agrees
with ordinary REML for normal linear models.
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Figure 6: Blood CPK concentration: displacements of the coefficient for Age in the dispersion
submodel under mean slippage models.

We have also demonstrated, through two small data examples, that the approximate REML
estimators are more robust than are the maximum likelihood estimators, in the sense of being
less sensitive to perturbations of the mean model.

Software and documentation for the S-Plus functions used are available from http://www.
statsci.org/s/. R versions are provided in the dglm, tweedie and statmod package available
from http://www.r-project.org.
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