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Abstract

This article reviews the statistical theory underlying the edgeR software package
for differential expression of RNA-seq data. Negative binomial models are used to
capture the quadratic mean-variance relationship that can be observed in RNA-seq
data. Conditional likelihood methods are used to avoid bias when estimating the
level of variation. Empirical Bayes methods are used to allow gene-specific variation
estimates even when the number of replicate samples is very small. Generalized
linear models are used to accommodate arbitrarily complex designs. A key feature of
the edgeR package is the use of weighted likelihood methods to implement a flexible
empirical Bayes approach in the absence of easily tractable sampling distributions.
The methodology is implemented in flexible software that is easy to use even for
users who are not professional statisticians or bioinformaticians. The software is
part of the Bioconductor project.

This article describes some recently implemented features. Loess-style weighting
is used to improve the weighted likelihood approach, and an analogy with quasi-
likelihood is used to estimate the optimal weight to be given to the empirical Bayes
prior. The article includes a fully worked case study with complete code.

1 Introduction

With the dramatic drop in sequencing costs provided by the Next Generation se-
quencing technologies in past few years, RNA-seq has now supplanted microarrays
as the technology of choice for genome level expression profiling of RNA samples
[17, 28, 24]. RNA-seq data is typically summarized by counting the number of se-
quence reads that map to genomic features of interest [10]. In this article we will
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assume that the aim is to conduct a gene-level analysis, but similar analyses could
be done for exons or exon-junctions or other genomic constructs. One very common
problem is to use the read counts to identify genes that are differentially expressed
between experimental conditions.

This article reviews the statistical theory underlying the edgeR software package
[20] for differential expression analysis of RNA-seq data. Rigorous and statistically
powerful analysis of RNA-seq data requires careful attention to a number of issues.
The read counts are discrete integers that show strong mean-variance relationships.
Different genes show different levels of variability, but the number of replicate sam-
ples from which variability is estimated can be very small indeed. Meanwhile, exper-
iments may involve complex experimental designs with multiple treatment factors
and other experimental variables.

edgeR uses negative binomial based models to capture the quadratic mean-
variance relationship that can be observed in RNA-seq data, and to distinguish
between biological and technical sources of variation [15]. By technical variation,
we mean that associated with the sequencing technology whereas biological variation
refers to changes in expression levels between experimental subjects. Information is
shared between genes to estimate biological variation reliably even when the num-
ber of replicates is very small [23]. Conditional likelihood methods are used to
avoid bias when estimating the level of variation [23, 15]. Empirical Bayes meth-
ods are used to allow gene-specific variation estimates while borrowing information
between genes [22, 15]. A key feature of the edgeR package is the use of weighted
likelihood methods to implement a flexible empirical Bayes approach in the absence
of easily tractable sampling distributions. Finally, generalized linear models are
used to accommodate arbitrarily complex designs, and the conditional likelihood
and empirical Bayes procedures are generalized to work in this context [15].

This article also describes some recent additions to the package, not previously
described in published form. In particular, loess-style weighting is used to improved
the weighted likelihood approach, and an analogy with quasi-likelihood [11] is used
to estimate the optimal weight to be given to the empirical Bayes prior. The article
includes a fully worked case study.

The edgeR package is part of the Bioconductor project [7]. Some advanced
numerical algorithms are used to ensure reliable convergence of the iterative algo-
rithms, and some of the core code has been implemented in C++ for speed and
numerical stability. The package can be installed from the Bioconductor website
http://www.bioconductor.org.
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Table 1: Table of read counts for a simple RNA-seq experiment with four samples. Each
column corresponds to a sample from a mouse with a wild-type or mutant genotype. Each
row corresponds to a gene in the mouse genome. Each entry is set at the number of reads
mapped to a particular gene in a particular sample. The sum of counts in each column is
the library size for the corresponding sample.

Wild-type Mutant

Sample 1 Sample 2 Sample 3 Sample 4

Gene 1 24 31 76 59
Gene 2 0 3 7 2
Gene 3 1988 1125 3052 2450
Gene 4 5 0 0 1
. . . . . . . . . . . . . . .

Total 22341961 20739175 15669423 23711320

2 The Negative Binomial Model

2.1 Summarizing an RNA-seq Experiment with a Count
Matrix

In a typical RNA-seq experiment, purified RNA is converted to cDNA and sequenced
on one of the high-throughput platforms. Millions of short ‘read’ sequences ranging
from 25 to 300 base pairs in length are generated from one (single-end) or both
(paired-end) ends of the cDNA fragments. These sequences must be aligned (or
mapped) to a reference genome or transcriptome. Summarization is then performed
by counting the number of reads mapped to known genomic features such as genes
or exons. For simplicity, we will refer to these features as ‘genes’ although any
genomic interval can be used. This results in a table of read counts for tens of
thousands of genes across a number of samples. These samples are associated with
a variety of treatment conditions that we want to compare.

Table 1 shows an example of the matrix of read counts for a very simple RNA-
seq experiment. The dataset consists of two groups (wild-type and mutant), each of
which contains samples from two mice, i.e., two biological replicates. After sequenc-
ing, reads for each sample are mapped to the mouse genome and summarized into
gene-level counts. The final RNA-seq expression profile is represented by a table of
read counts for tens of thousands of genes in all four mice samples (Table 1). The
aim of this experiment is to identify differentially expressed genes between wild-type
and mutant mice.

In this article, the total number of genes is denoted by G and the total number
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of samples is denoted by n. Hence, the table of read counts from an RNA-seq
experiment is a G × n matrix of non-negative integers. We refer to the set of read
counts for a sample as a library and the total number of reads in the library as the
library size. For a particular gene g, let ygi denote the read count in the ith sample.
The expected value of ygi given the experimental conditions and the sequencing
depths is then

E(ygi) = µgi = λgi ·Ni, (1)

where Ni is the library size and λgi is the expected proportion of reads mapped to
gene g in the ith sample.

In the above example, we have λg1 = λg2 = λWg and λg3 = λg4 = λMg where λWg
and λMg are the expected proportion of reads mapped to gene g in the wild-type
and the mutant groups, respectively. Then, the aim of the differential expression
analysis is to test

H0 : λWg = λMg against H1 : λWg 6= λMg , (2)

for each gene g = 1, 2, ..., G.

2.2 Distinguishing Technical from Biological Variation

Two levels of variation can be distinguished in any RNA-seq experiment. First,
there is the basic variability in the expression level of each gene from one biological
sample to another, even when the experimental conditions have not been changed.
Second, because expression levels can never be measured perfectly, there is a certain
level of technical variation arising from measurement error. RNA-seq provides the
possibility of disentangling these two sources of variation. Unlike microarrays, RNA-
seq can do this without technical replicates of the same RNA samples, because the
level of technical variation from sequencing is of a predictable nature.

Let πgi be the fraction of all cDNA fragments in the ith sample that originate
from gene g. This can be viewed as the true unobserved expression level of gene
g in individual sample i. Given πgi and the library size Ni, the expected count
is E(ygi|πgi) = πgiNi. The read counts for any given gene are usually considered
to follow a Poisson law under repeated sequencing runs of the same RNA sample
[14], so it is reasonable to suppose that var(ygi|πgi) = πgiNi also. This represents
technical variability associated with the sequencing technology.

Let us further suppose that πgi varies between biological replicates in such a way
that the coefficient of variation (CV) remains constant for any given gene. This
implies that E(πgi) = λgi and var(πgi) = φgλ

2
gi, where φg is the squared CV and

λgi is the population mean proportion for gene g given the experimental conditions
applied to sample i. The unconditional variance of ygi can then be derived as

var(ygi) = Eπ[var(y|π)] + varπ[E(y|π)] = µgi + φgµ
2
gi (3)

where µgi = λgiNi is the population mean of ygi. Dividing both sides by µ2gi gives

CV2(ygi) = 1/µgi + φg (4)
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The first term is the squared CV of ygi given πgi and the second is the squared CV
of πgi. In other words,

Total CV2 = Technical CV2 + Biological CV2 . (5)

This partition of CV2 into technical and biological components was first derived
by [15].

We call φ
1/2
g the biological coefficient of variation (BCV). BCV represents the

coefficient of variation with which the true abundance of the gene varies between
replicate RNA samples. It represents the CV that would remain between biological
replicates if sequencing depth could be increased indefinitely. Note that the tech-
nical CV decreases as the size of the counts increases whereas the BCV does not.
Thus, the BCV is likely to be the dominant source of uncertainty for high-count
genes. Reliable estimation of the BCV is therefore crucial for realistic assessment
of differential expression in RNA-seq experiments.

2.3 Generalized Linear Models Accommodate Complex
Experiments

Generalized linear models (GLMs) are an extension of classical linear models to non-
normally distributed response data [18, 16]. We use GLMs to accommodate complex
experimental designs with multiple explanatory factors. GLMs allow the responses
to follow any linear exponential family of probability distributions, and each dis-
tribution family is characterized by it mean-variance relationship. In our case, the
quadratic mean-variance relationship shown above in Equation 3 determines the
negative binomial distribution family for read counts. We assume therefore that

ygi ∼ NB(µgi, φg) , (6)

where µgi is the mean and φg is now the negative binomial dispersion parameter.
The assumption of negative binomial variation for ygi is equivalent to assuming that
the true gene abundances πgi follow a gamma distributional law across replicate
RNA samples.

We use a log-linear model to represent the influence of the treatment conditions
and the library sizes on the expected count sizes for any gene. Recall that µgi is the
product of the expression proportion λgi and the library size. We suppose that λgi
can be represented by a log-linear model,

log λgi = xTi βg, (7)

where xi is a covariate vector indicating the treatment conditions applied to sample
i and βg is a vector of regression coefficients by which the covariate effects are
mediated for gene g. It follows that

logµgi = xTi βg + logNi. (8)
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Gathering the covariate vectors xi into a design matrix X, the vector of linear
predictors for gene g is the matrix product Xβg. The standard GLM method would
use Fisher-scoring to estimate the parameter vector βg. This is usually successful
but can fail to converge for some datasets. edgeR enhances the usual Fisher-scoring
algorithm with a Levenberg damping modification to ensure that the sequence of
iterations converges for all genes and all datasets [15]. The modified algorithm forces
a reduction in the residual deviance at each iteration. The sequence of deviances is
monotonic and bounded, and so always converges unless floating point inaccuracies
intervene first.

In the simple example shown in Section 2.1, the design matrix might take the
form

X =


1 0
1 0
1 1
1 1

 . (9)

In that case the first regression coefficient βg1 would represent the log-expression
proportion in the wild-type group and the second coefficient βg2 would represent
the log-fold change in expression in the mutant group relative to wild-type. In the
notation of Section 2.1, βg1 = log λWg and βg2 = log(λMg /λ

W
g ). The hypothesis of

interest in this example is

H0g : βg2 = 0 against H1g : βg2 6= 0, (10)

and this hypothesis is tested for all genes.
edgeR provides the ability to test whether any contrast of the regresssion coef-

ficients equal to zero. Specifically, one can test the null hypothesis H0 : cTβg = 0
where c is an arbitrary contrast vector. By default, hypotheses are tested using
the usual asymptotic chisquare approximation to the likelihood ratio statistic, al-
though edgeR also offers two more conservative F -test approximations as alternative
options.

3 Empirical Bayes Dispersion Estimation

3.1 Overview

Accurate estimation of the dispersion parameter φ in the negative binomial model is
vital for fitting GLMs and assessing differential expression. Given that an RNA-seq
dataset often has a small number of samples, traditional univariate estimators of φ
tend to perform poorly [23]. Maximum likelihood estimators (MLEs) in particular
tend to underestimate dispersion parameters because they make no adjustment for
the fact that the mean is estimated from the same data [23].

The differential expression analysis of an RNA-seq experiment with a one-way
layout was studied by Robinson and Smyth [22, 23] who proposed a quantile-
adjusted conditional maximum likelihood method for dispersion estimation. This
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approach is available in edgeR via the estimateTagwiseDisp function, but is re-
stricted to experiments with a one-way layout, i.e., to experiments with only one
experimental factor.

In this chapter, we will focus on the general case in which RNA-seq experiments
may involve multiple treatment conditions and blocking variables. Dispersion esti-
mation for complex experimental designs was studied by McCarthy et al. [15]. Their
method is based on the idea of an adjusted profile likelihood proposed by Cox and
Reid [4].

3.2 Cox-Reid Adjusted Profile Likelihood

For general RNA-seq experiments with multiple factors, negative binomial disper-
sions are estimated using the Cox-Reid (CR) adjusted profile likelihood method
[4, 15]. The CR method is based on the idea of approximate conditional likelihood
which reduces to residual maximum likelihood (REML). Briefly, REML removes the
effect of nuisance parameters which allows unbiased estimation of the dispersion.
This accounts for all systematic sources of variation in the model.

For the purpose of estimating the dispersion, φg is the parameter of interest
whereas the regression coefficients βg and the means µgi are nuisance parameters.
One condition of the CR method is that the nuisance parameters are assumed to be
orthogonal to the parameter of interest, i.e., the Fisher information matrix must be
block diagonal [4]. It can be shown that orthogonality between βg and φg follows
here from the fact that φg appears only in the variance function and not in the
mean of the negative binomial GLMs [26].

The Cox-Reid adjusted profile likelihood (APL) for φg is the penalized log-
likelihood, i.e.,

APLg(φg) = `(φg; yg, β̂g)−
1

2
log det(Ig), (11)

where yg is the vector of counts for gene g, β̂g is the estimated coefficient vector, `

is the log-likelihood function and Ig is the Fisher information of βg evaluated at β̂g
and φg.

Note that the β̂g is the MLE of βg given φg. Thus, β̂g is also a function of φg.
This means that the log-likelihood ` can be considered as a profile likelihood `p
which depends only on φg, i.e., `(φg; yg, β̂g) = `p(φg; yg). Similarly, the adjustment
term Ig can be treated as a function of φg. Maximization of APLg(φg) can then be
used to obtain an estimate for φg.

3.3 Weighted Likelihood Empirical Bayes

The empirical Bayes method is one of the most powerful tools in data analysis.
The aim is to estimate the prior distribution from the data and then apply the
standard Bayesian approach to obtain posterior estimates. Empirical Bayes estima-
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tion has been shown to outperform classical maximum likelihood estimates for high
dimensional problems [6, 5, 25].

The cost of RNA-seq experiments often limits RNA-seq studies to only a small
number of replicate libraries. This makes it difficult to obtain reliable dispersion
estimates. The situation is further complicated by the fact that different genes may
have different dispersions. For microarray data, this problem has been solved by
applying an empirical Bayes strategy [25] where information is shared across genes
or probes to stabilize the gene-wise variance estimates. It is tempting to apply
a similar approach to RNA-seq data. Unfortunately, the direct empirical Bayes
approach to stabilize the dispersion estimates is not applicable in the case of RNA-
seq data since there is no conjugate prior distribution for the negative binomial
dispersion φ.

One way to approximate the empirical Bayes strategy is to use a weighted like-
lihood. It can be shown that an empirical Bayes estimator is equivalent to an
estimate obtained by maximizing a weighted likelihood function on a set of obser-
vations [27, 3]. This result provides an opportunity to implement an approximation
of the empirical Bayes method for RNA-seq data.

Common Dispersion The simplest approach of sharing information be-
tween genes is to assume that all genes share a same dispersion value φ, which
is called the common dispersion [23, 15]. It can be estimated by maximizing the
common APL, which is defined as

APLC(φ) =
1

G

G∑
g=1

APLg(φ), (12)

where G is the total number of genes in the dataset.
The common APL can be considered as a special weighted likelihood in which

the likelihoods for each gene have equal weights. Hence, all genes contribute equally
to the estimation of this common dispersion. A common dispersion can be estimated
in edgeR via the estimateGLMCommonDisp function.

Trended Dispersion The common dispersion approach is almost certainly
too simple. It is far more likely that some genes have larger or smaller dispersion
values than other genes. It has been found in many RNA-seq datasets that genes
with lower expression level tend to have larger dispersions, and vice versa. Hence,
it is reasonable to assume that the dispersion values depend on the gene-wise ex-
pression levels and can be modelled by a mean-dispersion trend [1]. In edgeR, the
dispersion values obtained from the mean-dispersion trend are referred to as the
trended dispersion, and in principle genes with the same expression level (or the
same mean) should have the same trended dispersion.

The trended dispersion can also be estimated by the weighted likelihood ap-
proach. Given an RNA-seq dataset, the overall expression level of each gene is
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calculated as an average across all samples and expressed as an average log count-
per-million (logCPM) using the aveLogCPM function. This average is computed by
a simple GLM, taking into account the common dispersion and the library sizes.
Then, all the genes are sorted according to their average logCPM values. For a
particular gene g, a locally shared APL denoted APLSg(φg) is formed by averaging
the APLs of the set of genes, denoted Cg, that are nearest to gene g in average
logCPM. By default, the neighbourhood set Cg is chosen to contain at least 25% of
all genes, and the proportion is automatically increased if the total number of genes
in the dataset is small. This ensures that each set Cg contains enough genes (and
hence sufficient information) to represent the dispersion trend locally.

A graduated weighting approach was used to account for the relevance in ex-
pression level between gene g and other genes in the set Cg. The weight for the
APL of gene a in Cg, denoted wa, is determined by the tricube function, i.e.,

wa = (1− |xa|3)3, (13)

where −1 < xa < 1 represents the scaled difference in average logCPMs for genes
g and a. In other words, the closer the expression levels of genes g and a are, the
smaller |xa| will be, and thus the larger wa will be. This process can be repeated
for all the genes in the set to obtain

APLSg(φg) =

∑
a∈Cg

wa ·APLa(φg)∑
a∈Cg

wa
, (14)

as the locally shared APL for gene g. This is equivalent to fixing φ to a constant,
fitting a loess curve of degree 0 through those APLa(φ) for a = 1, 2, ..., G, and using
the fitted value as the final value of the locally shared APL at φ for each gene. The
trended dispersion for gene g can then be estimated by maximizing APLSg(φg).

Gene-specific Dispersion The trended dispersion approach would be suf-
ficient if the true dispersions followed the mean-dispersion trend and genes with
the same expression level had identical dispersion. This however is rarely true for
real datasets and in practice dispersions are gene-specific. An individual dispersion
therefore should be estimated for each individual gene, yet we are faced with the
problem that the data from a single gene are often insufficient for reliable estimation
of this dispersion. We need therefore a method that allows each gene to have its own
dispersion estimate while still gaining information from the other genes. This can
be achieved by an empirical Bayes approach that combines individual and shared
information to obtain stable dispersion estimators. Such an approach has the effect
of squeezing the genewise dispersions towards a pooled estimate, resulting in more
stable inference when the number of samples is small.

The problem with directly applying the empirical Bayes approach is that there
is no conjugate prior for the negative binomial dispersion φg. Thus, a weighted
likelihood method has been proposed to approximate the empirical Bayes strategy
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Figure 1: Genes are sorted by their expression level. The gene-specific dispersion for a particular
gene g is estimated by maximizing the weighted APL, i.e., the weighted average between the
gene-wise APL and the locally shared APL. The weight assigned to the locally shared likelihood
is denoted by G0 which can be interpreted as the prior number of observations.

for RNA-seq count data [22, 15]. To estimate the gene-specific dispersion, the
weighted APL for a particular gene g is constructed as

APLWg(φg) = APLg(φg) +G0 ·APLSg(φg), (15)

where APLg(φg) is the gene-wise APL using the information from gene g only,
APLSg(φg) is the locally shared APL for gene g, and G0 is the weight assigned to
the APLSg(φg). The gene-specific dispersion φg is then estimated by maximizing
APLWg(φg). This weighted APL approach is described in Figure 1.

In empirical Bayes terms, the locally shared APL, APLSg(φg), can be interpreted
as the prior distribution for φg, and the APLg(φg) as the likelihood from the direct
observed data. This means that the APLWg(φg) can be interpreted as the posterior
distribution for φg, which is a compromise between the prior and the observation.
In the weighed likelihood approach, the prior distribution for φg can be thought of
as arising from prior observations on a set of G0 genes. Hence, the prior weight G0

is referred to as the prior number of observations.
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Figure 2: The empirical Bayes shrinkage by weighted likelihood on simulated data. The plot on
the left shows the dispersion estimates without empirical Bayes shrinkage. For each gene, the
gene-wise dispersion estimate is obtained using the information of that gene only. The plot on
the right shows the gene-wise dispersion estimates after empirical Bayes shrinkage. Gene-wise
dispersion estimates are squeezed towards the dispersion trend which represents the use of prior
information.

The optimal choice for G0 depends on the variability of the dispersions. Large
values are best when the dispersions are a constant for all the genes or they closely
follow the mean-dispersion trend. Smaller values are recommended when the disper-
sions are more variable among different genes. If G0 = 0, no information is borrowed
from other genes. This means that the gene-specific dispersion for a particular gene
is purely estimated from its gene-wise APL. If G0 is set to be infinitely large, infor-
mation from that individual gene will be ignored. This means that the gene-specific
dispersion will be fully determined by its locally shared APL such that the result
will be the same as the trended dispersion. This information borrowing strategy
can be viewed as shrinking individual dispersion estimates towards the dispersion
trend (Figure 2) where the value of G0 represents the amount of shrinkage.

3.4 Estimating Prior Weight

As mentioned previously, there is no conjugate prior for the genewise dispersion
parameters. This means that there is no automatic estimation for the prior number
of observations G0. Thus, an alterative approach must be used. To account for the
fact that more samples result in more gene-wise information, we write G0 as

G0 =
d0
dg
, (16)
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where d0 is the prior degrees of freedom and dg is the (known) residual degrees of
freedom for gene g. The prior degrees of freedom represents the precision of the prior
and does not depend on the total number of samples. The prior degrees of freedom
can also be viewed as a measure of the consistency of the genewise dispersions. If the
dispersions tend to be very gene-specific, then d0 should be small and the prior will
be vague. If the genewise dispersions tend to be consistent, i.e., close to the global
trend, then d0 should be large making the prior very informative. Once we estimate
the d0, we can easily calculate the prior weight G0 in the weighted likelihood to
obtain the best estimator for φg.

One way to estimate the prior degrees of freedom under the GLM framework
is to use a quasi-likelihood in which the uncertainty of the variance can be ab-
sorbed into an overdispersion parameter. In GLM theory, the variance function
V (µ) uniquely specifies a probability distribution such as the Poisson or negative
binomial distribution. The quasi-likelihood variance function can then be written
as

var(ygi) = σ2g · V (µgi), (17)

where σ2g is a factor that we will call the quasi-dispersion parameter. Note that
the quasi-likelihood function is not a log-likelihood corresponding to any actual
probability distribution. Instead, it can be used to describe a function that has
similar properties to a log-likelihood function.

Following [11], we assume that the prior distribution for σ2g is a scaled inverse
χ2-distribution with degrees of freedom d0 and scaling factor s20d0, i.e.,

σ2g ∼ s20 ·
d0
χ2
d0

, (18)

where s20 can be considered as a prior mean for the quasi-dispersion. Our aim is to
estimate d0, which represents the precision of the prior distribution for σ2g .

Write Dg for the residual deviance of the generalized linear model fitted to the
read counts for gene g. The mean residual deviance

s2g =
1

dg
Dg (19)

is an estimator of σ2g . It can be shown [3] using the saddlepoint approximation [8]
that the mean deviance s2g follows approximately a χ2-distribution with degrees of
freedom dg and scaling factor σ2g/dg , i.e.,

s2g|σ2g ∼ σ2g ·
χ2
dg

dg
. (20)

To make this approximation more accurate, a special calculation is required for the
residual degrees of freedom dg when some of the fitted values are exactly zero. In
particular, we ensure that any experimental condition for which the counts are all
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zero does not contribute to dg. This is because such counts will have fitted values
exactly zero and will make zero contribution to the residual deviance regardless of
the value of the dispersion. This calculation is a refinement on the procedure of
Lund et al. [11], and serves to make s2g more nearly unbiased for σ2g in the presence
of zero counts.

The values of s20 and d0 can be estimated from the marginal distribution of s2g,
which is scaled F -distribution,

s2g ∼ s20 · Fdg ,d0 , (21)

where Fdg ,d0 denotes the F -distribution with degrees of freedom dg and d0 [25, 11].
Estimators of s20 and d0 can then be obtained by the method of moments [25].

In the main edgeR analysis pipeline, the quasi-likelihood is used only to estimate
d0. We assume that it is reasonable to use the same d0 for empirical Bayes estimation
of the negative binomial dispersions φg as for the quasi-dispersions σ2g . This allows
us to calculate the prior weight G0 required for Equation 15 from Equation 16 using
dg and the quasi-likelihood estimate for d0.

4 Case Study: Transcriptional Program Reg-

ulation by IRF4

4.1 Experimental Design

We now demonstrate by way of a case study how the statistical theory in Sections 2
and 3 is applied in practice to analyze RNA-seq datasets. The case study includes
the complete R code used to undertake the analysis. The data are from a study on
the transcription factor IRF4 [13]. In the study, it was found that IRF4 regulated
the expression of key molecules required for the aerobic glycolysis of effector T cells
and was essential for the clonal expansion and maintenance of effector function of
antigen-specific CD8+ T cells [13].

One part of this study was to identify the transcriptional program regulated by
IRF4 during the TCR affinity-driven population expansion of CD8+ T cells. To

investigate this, T cells were harvested from Irf4+/+ wild-type or Irf4-/- knock-
out mice. The knock-out mice have a mutation which prevents the Irf4 gene from
producing a viable protein. T cells were stimulated with high-affinity peptides (N4)
or low-affinity peptides (V4). RNA was extracted from the cells and profiled using
RNA-seq.

The study can be viewed as a 2× 2 factorial experiment with 2–3 replicates for
each combination of IRF4 and affinity peptide conditions. There are 9 RNA samples
in all. As is usual for an edgeR analysis, we start with experimental information
about each RNA sample contained in a data frame called targets. The data frame
was created using a spreadsheet and read into R using readTargets. It contains
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the two experimental factors, Genotype and Treatment, as well as the identifier for
each sample on the public ENA repository:

> targets

ENA Label Genotype Treatment

1 SRR953136 WT.N4.rep1 WT N4

2 SRR953137 WT.N4.rep2 WT N4

3 SRR953138 WT.V4.rep1 WT V4

4 SRR953139 WT.V4.rep2 WT V4

5 SRR953140 KO.N4.rep1 KO N4

6 SRR953141 KO.N4.rep2 KO N4

7 SRR953142 KO.N4.rep3 KO N4

8 SRR953143 KO.V4.rep1 KO V4

9 SRR953144 KO.V4.rep2 KO V4

The aim is to detect genes that are differentially expressed (DE) between different
conditions.

4.2 Mapping Reads to the Mouse Genome

The RNA samples were sequenced on an Illumina HiSeq 2000 at the Australian
Genome Reseach Facility. Paired end sequencing was used, and reads were 100
bases long. This means that the first and last 100 bases of each RNA fragment were
sequenced. Fragments were up to about 600 bases long in total.

The raw sequence reads are available either in SRA format from the Gene Ex-
pression Omnibus (http://www.ncbi.nlm.nih.gov/geo) as series GSE49929 or in
FastQ format from the European Nucleotide Archive (ENA) (http://www.ebi.ac.
uk/ena) as series SRP028864. We analyse here gzipped FastQ files downloaded from
ENA. There are a total of 11 samples under ENA series SRP028864, the first 9 of
which are analyzed here.

We start with a data frame of file names in R:

> files

Forward Reverse SAM

1 SRR953136_1.fastq.gz SRR953136_2.fastq.gz SRR953136.sam

2 SRR953137_1.fastq.gz SRR953137_2.fastq.gz SRR953137.sam

3 SRR953138_1.fastq.gz SRR953138_2.fastq.gz SRR953138.sam

4 SRR953139_1.fastq.gz SRR953139_2.fastq.gz SRR953139.sam

5 SRR953140_1.fastq.gz SRR953140_2.fastq.gz SRR953140.sam

6 SRR953141_1.fastq.gz SRR953141_2.fastq.gz SRR953141.sam

7 SRR953142_1.fastq.gz SRR953142_2.fastq.gz SRR953142.sam

8 SRR953143_1.fastq.gz SRR953143_2.fastq.gz SRR953143.sam

9 SRR953144_1.fastq.gz SRR953144_2.fastq.gz SRR953144.sam

Each row corresponds to an RNA sample. The first column gives the name of the
file containing the sequences of the forward strand ends of the RNA fragments. The
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second column gives the name of the file containing the reverse strand reads.
The paired reads were mapped to the mouse genome using the Subread aligner

[9]. The aligner uses the reads from both ends of each fragment to locate the
fragment on the genome.

> library(Rsubread)

> align("mm9", readfile1=files$Forward, readfile2=files$Reverse,

+ "gzFASTQ", output_file=files$SAM, tieBreakQS=TRUE)

This code also uses an index ("mm9") of the mouse genome. The index was cre-
ated from the NCBI37/mm9 (July 2007) build of the mouse genome using the
buildindex command of the subread package [9]. The mm9 index file can be
downloaded from the Subread website http://subread.sourceforge.net.

The number of reads (forward and reverse) varies from 12 million to 19 million
for each sample. For this dataset, the proportion of reads successfully mapped to
the genome was more than 99% for all samples. This suggests good quality RNA
samples and successful alignment:

> propmapped(file$SAM)

Samples NumTotal NumMapped PropMapped

1 SRR953136.sam 13164036 13089886 0.994

2 SRR953137.sam 13007946 12932901 0.994

3 SRR953138.sam 12919854 12849910 0.995

4 SRR953139.sam 12334822 12262014 0.994

5 SRR953140.sam 12454324 12370667 0.993

6 SRR953141.sam 18595382 18487656 0.994

7 SRR953142.sam 19119234 19008197 0.994

8 SRR953143.sam 13217130 13125153 0.993

9 SRR953144.sam 13273338 13200580 0.995

4.3 Fragment Counts for Each Gene

Now we compute a table of genewise counts. This is a two-step process. First the
mapped reads are converted into mapped RNA fragments. A pair of forward and
reverse reads is considered to represent an RNA fragment whenever they map to
compatible nearby locations on the genome. The fragment is then assigned to a gene
whenever the fragment overlaps at least one exon of the gene. This computation is
done by the featureCounts function of the Rsubread package [10]:

> fc <- featureCounts(files$SAM, isPairedEnd=TRUE)

By default, the function uses RefSeq annotation from the National Center for
Biotechnology Information (NCBI) giving the start and end positions of each exon
[19]. The output is a matrix of counts, one row for each NCBI Entrez Gene identifier
and one column for each RNA sample.
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4.4 Creating a DGEList Object

The edgeR package stores data in a simple list-based data object called a DGEList.
edgeR provides a range of generic functions and methods for such data objects,
but they can at the same time be manipulated like ordinary lists in R. The main
components of a DGEList object are a matrix of integer counts, a data frame of
sample information and an optional data frame of gene annotation.

> library(edgeR)

> y <- DGEList(counts=fc$counts, group=targets$Genotype)

> colnames(y) <- targets$Label

There are entries for 26310 genes and 9 samples:

> dim(y)

[1] 26301 9

Note the application of standard generic functions colnames and dim which have
methods defined for DGEList objects. Many other generic functions in R that are
applicable to matrices or data frames also have methods for DGEList objects.

The library sizes are automatically computed by DGEList as the total number
of assigned RNA fragments for each sample. The number of mapped fragments is
slightly less than half the total number of mapped reads shown in Section 4.2, and
the number of fragments assigned to genes is about 80% of that.

> y$samples

group lib.size norm.factors

WT.N4.rep1 WT 5038159 1

WT.N4.rep2 WT 4966457 1

WT.V4.rep1 WT 5026320 1

WT.V4.rep2 WT 4665370 1

KO.N4.rep1 KO 4703442 1

KO.N4.rep2 KO 6975408 1

KO.N4.rep3 KO 7271163 1

KO.V4.rep1 KO 4726829 1

KO.V4.rep2 KO 4995218 1

Many edgeR functions will accept an ordinary matrix of counts, but a DGEList
object is more convenient because it automatically collates a variety of related in-
formation. For example, subsetting the above DGEList object y by column would
automatically subset both the counts and the sample information at the same time.

4.5 Filtering and Normalization

Genes with counts that are all zero or all very low are usually not of interest in a
differential expression analysis for two reasons. The biological reason is that a gene
must be expressed at some minimal level before it is likely to be translated into a
protein or to be biologically important. The statistical reason is that very low counts
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provide little statistical information to distinguish between the null and alternative
hypotheses. In this particular dataset, we consider a gene to be expressed at a
reasonable level in a sample if its count-per-million (CPM) value is above 1, which
is equivalent to having 5–7 fragments in that sample. A gene is kept in the analysis
if it is sufficiently expressed (CPM > 1) in at least two samples:

> CPM <- cpm(y)

> keep <- rowSums(CPM > 1) >= 2

> y <- y[keep, ]

The filtering rule doesn’t use the experimental design information, yet will keep any
gene that is expressed in both the samples for any combinations of genotype and
treatment condition.

After filtering, there are 12347 genes remaining and most of the counts are
greater than zero:

> dim(y)

[1] 12347 9

> head(y$counts)

WT.N4.rep1 WT.N4.rep2 WT.V4.rep1 WT.V4.rep2 KO.N4.rep1

27395 305 291 430 499 599

18777 510 527 653 642 404

21399 333 361 445 608 424

108664 194 124 230 281 264

12421 326 355 158 210 193

100504079 15 15 3 10 23

KO.N4.rep2 KO.N4.rep3 KO.V4.rep1 KO.V4.rep2

27395 702 895 785 671

18777 888 724 585 544

21399 710 806 771 572

108664 398 444 334 340

12421 388 263 175 237

100504079 36 10 5 10

It is also useful to compute relative scaling factors for the libraries by

> y <- calcNormFactors(y)

> y$samples

group lib.size norm.factors

WT.N4.rep1 WT 5038159 1.033

WT.N4.rep2 WT 4966457 1.013

WT.V4.rep1 WT 5026320 0.964

WT.V4.rep2 WT 4665370 0.986

KO.N4.rep1 KO 4703442 1.009

KO.N4.rep2 KO 6975408 1.015

KO.N4.rep3 KO 7271163 1.039
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KO.V4.rep1 KO 4726829 0.931

KO.V4.rep2 KO 4995218 1.016

The calcNormFactors function returns the DGEList data argument back with only
the norm.factors changed. The scaling factors here represent compositional differ-
ences between the shape of the count distributions for the samples. The normaliza-
tion factors multiply to unity. Factors below 1 indicate that an excessive number
of fragments have been assigned to a small number of very highly expressed genes
in that library, meaning that less sequencing depth is available for the remaining
genes [21].

4.6 Gene Annotation

The summarized counts from Rsubread include Entrez Gene IDs as rownames. The
Entrez IDs link to gene-specific information from the NCBI database [12]. To get
more details such as gene symbol and chromosome number, we use the annotation
file ‘Mus musculus.gene info’ obtained from the NCBI website (ftp://ftp.ncbi.
nih.gov/gene/DATA/GENE_INFO/Mammalia).

> anno <- read.delim(file="Mus_musculus.gene_info", header=FALSE, skip=1)

We add selected annotation columns to the DGEList object:

> m <- match(rownames(y), anno[,2])

> y$genes <- anno[m, c(2,3,7)]

> colnames(y$genes) <- c("GeneID", "Symbol", "Chr")

> head(y$genes)

GeneID Symbol Chr

7060 27395 Mrpl15 1

4165 18777 Lypla1 1

5899 21399 Tcea1 1

24191 108664 Atp6v1h 1

625 12421 Rb1cc1 1

4.7 Data Exploration

A multiple dimensional scaling (MDS) plot can be used to check the dissimilarities
among the samples:

> plotMDS(y, col=as.numeric(targets$Genotype))
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plotMDS is a generic function defined in the limma package with a method defined
for DGEList objects. The distance between each pair of samples is calculated as
the leading fold change, defined as the root-mean-square of the largest 500 log2-fold
changes between that pair of samples. Samples are well separated by the genotype
condition (i.e., IRF4 wild-type and knock-out) in the first dimension. A separation
by the affinity peptide level (N4 and V4) is also observed in the second dimension.
All the replicates are close to each other except for the ones in the IRF4 knock-out
(KO) with high-affinity peptides (N4).

4.8 The Design Matrix

We create a design matrix to capture all the experimental information. In this case
study, the IRF4 genotype conditions (KO and WT) and the affinity peptide levels
(N4 and V4) divide the data into four separate groups. The design matrix can be
constructed using the model.matrix function as described below.

> fac <- paste(targets$Genotype, targets$Treatment, sep=".")

> fac <- factor(fac)

> design <- model.matrix(~0+fac)

> colnames(design) <- levels(fac)

> design

KO.N4 KO.V4 WT.N4 WT.V4

1 0 0 1 0

2 0 0 1 0

3 0 0 0 1

4 0 0 0 1

5 1 0 0 0

6 1 0 0 0

7 1 0 0 0
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8 0 1 0 0

9 0 1 0 0

attr(,"assign")

[1] 1 1 1 1

attr(,"contrasts")

attr(,"contrasts")$fac

[1] "contr.treatment"

We use this simple group-mean parametrization instead of a classic factorial model
because it allows contrasts between the groups to be extracted in a simple and
transparent way.

4.9 Estimating Dispersions

Now we can proceed to dispersion estimation. The estimateDisp function im-
plements the weighted likelihood empirical Bayes strategy described earlier in this
chapter. It takes the data object and the design matrix as arguments, and inserts
the common, trended and genewise (tagwise) dispersions into the data object:

> y <- estimateDisp(y, design)

The common dispersion of 0.051 is equivalent to a overall BCV of 23%:

> y$common.dispersion

[1] 0.051

The gene-specific dispersions vary between 0.024 and 1.1:

> summary(y$tagwise.dispersion)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.024 0.034 0.046 0.065 0.073 1.100

The estimated prior degrees of freedom for this dataset is 6.9:

> y$prior.df

[1] 6.9

This can be compared to the residual degrees of freedom dg, which is equal to 5 for
most genes in this dataset. The prior degrees of freedom is slightly greater than
the residual degrees of freedom, meaning that slightly more weight is being given
to the global trend rather than the individual gene when estimating each genewise
dispersion.

The BCV plot shows the common, trended and genewise dispersions as a function
of average logCPM.

> plotBCV(y)
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Recall that the BCV is the square root of the dispersion. Most of the gene-specific
BCVs cluster around the BCV trend, which decreases and then asymptotes to a
constant value as the gene expression level increases.

4.10 Detecting Differentially Expressed Genes

In this study, one particular comparison of interest is between IRF4 wild-type (WT)
cells stimulated with high-affinity peptide (N4) and WT cells stimulated with low-
affinity peptide (V4). To find genes that are DE for this comparison, the first step is
to fit genewise negative binomial GLMs using the gene-specific dispersions estimated
above:

> fit <- glmFit(y, design)

Then likelihood ratio statistics are computed for the comparison of interest:

> lrt <- glmLRT(fit, contrast=c(0,0,1,-1))

Here the contrast argument specifies that the third and fourth groups are to be
compared.

The topTags function collates results for the most significant genes:

> topTags(lrt)

Coefficient: 1*WT.N4 -1*WT.V4

GeneID Symbol Chr logFC logCPM LR PValue FDR

1505 13813 Eomes 9 -5.70 7.07 225.7 5.29e-51 6.53e-47

10096 60596 Gucy1a3 3 5.88 4.93 179.9 5.06e-41 3.12e-37

2549 16001 Igf1r 7 3.75 4.88 127.4 1.51e-29 6.20e-26

14239 68404 Nrn1 13 4.16 5.41 109.4 1.30e-25 4.01e-22

30622 236915 Arhgef9 X 5.91 3.38 98.6 3.09e-23 7.62e-20

27600 140795 P2ry14 3 -3.86 4.70 92.9 5.54e-22 9.78e-19
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3811 18186 Nrp1 8 3.97 4.99 92.9 5.54e-22 9.78e-19

2157 14945 Gzmk 13 -3.40 3.72 85.0 2.94e-20 4.54e-17

35406 380797 Ighd 12 3.70 3.59 83.4 6.56e-20 9.00e-17

34084 320407 Klri2 6 3.83 3.63 78.2 9.35e-19 1.15e-15

Local false discovery rates (FDR) are calculated using the Benjamini-Hochberg (BH)
method [2]. By default, topTags displays the top 10 genes, but can be asked to
select any number. By ranking all genes, we can see that there are 1181 genes
detected as DE at an FDR cutoff of 1%:

> tp <- topTags(lrt, n=Inf)

> sum(tp$table$FDR < 0.01)

[1] 1181

A smearplot (a form of MA-plot) can be produced to display the DE results
graphically:

> DE <- tp$table[tp$table$FDR < 0.01,]$GeneID

> plotSmear(lrt, de.tags=DE, cex = 0.4)

> abline(h=c(-1, 1), col="blue")

The axes of the plot correspond to the logCPM and logFC columns of the results
table.

4.11 Session Information

The following output shows the R session and package versions used for this case
study:

> sessionInfo()

R version 3.0.2 (2013-09-25)

Platform: i386-w64-mingw32/i386 (32-bit)
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locale:

[1] LC_COLLATE=English_Australia.1252

[2] LC_CTYPE=English_Australia.1252

[3] LC_MONETARY=English_Australia.1252

[4] LC_NUMERIC=C

[5] LC_TIME=English_Australia.1252

attached base packages:

[1] splines stats graphics grDevices utils datasets

[7] methods base

other attached packages:

[1] locfit_1.5-9.1 edgeR_3.4.0 limma_3.18.3 Rsubread_1.12.6

loaded via a namespace (and not attached):

[1] grid_3.0.2 lattice_0.20-24
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