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Optimization starting points and to take the most extreme (if they
are not equal). If necessary, a large number of starting

values can be randomly generated. Another heuristic
is to perturb a local extremum slightly to check
that the algorithm returns to iSimulated annealing
and genetic algorithms are relatively recent types
of algorithms which are often used successfully on
problems where there are a large number of closely
d competing local extrema.

This entry discussesnconstrained optimization.
Sometimes, howevex,must satisfy one or more con-
straints. An example is some of the components of

g(x) =0 (1)  being known a priori to be positive. In some cases the
constraints may be removed by a suitable transforma-
for x where g is a possibly multivariate function. tion (x; = € for example), or by use of Lagrangian
Many algorithms for minimizingf(x) are in fact multipliers (see Constrained optimization).

Optimization is the process by which one finds that
value of a vectok, say, that maximizes or minimizes
a given function f(x). The idea of optimization
goes to the heart of statistical methodology, as it is
involved in solving statistical problems basedleast
squares maximum likelihood, posterior mode an
so on. A closely related problem is that of solving a
nonlinear equation,

derived from algorithms for solving =9/ /dx = 0, One must choose between algorithms that use
wheredf /ox is the vector of derivatives of with derivatives and those that do not. In general, methods
respect to the components xf that use derivatives are the more powerful. However,

Except in linear cases, optimization invariably the increase in speed does not always outweigh the
proceeds by iteration. Starting from an approximateextra overhead in computing the derivatives, and it
trial solution, a useful algorithm will gradually refine can be a great convenience for the user not to have
the working estimate until a predetermined level of to program them. In some special cases it is pos-
precision has been reached. If the function is smoothsible to generate analytical derivatives directly from
a good algorithm can be expected to converge to dhe code defining the function by usiraptomatic
maxima or minima when given a sufficiently good differentiation .
starting value. Algorithms are also distinguished by the amount

A good starting value is one of the keys to successof memory they consume. Storage requirements are
In general, finding a starting value requires heuris-typically of orderN or N2, whereN is the dimension
tics and an analysis of the problem. One strategyof x. In many environmetric applicationd, is not so
for fitting complex statistical models, by maximum large that storage becomes an issue.
likelihood or otherwise, is to progress in stages from If one can calculate first and second derivatives of
the simple to the complex. Fit a series of models of f, then the well-known Newtonian method is simple
increasing complexity, using the simpler model as aand works well. It is crucially important, though, to
starting value for the more complicated model in eachcheck the function valug'(x) at each iteration and
case. Maximum likelihood iterations can often be ini- to implement some sort of backtracking strategy to
tialized by using a less-efficient moment estimator. Inprevent the Newton iteration from diverging to dis-
some special cases, such as generalized linear modedisnt parts of the parameter space from a poor starting
(GLMs), it is possible to use the datum point itself value. If second derivatives are not available, then
as a starting value for the fitted values. guasi-Newtonian methods, of which Fisher’s method

An extremum (maxima or minima) of can be of scoring is one, can be recommended. General
either global (truly the extreme value of over purpose quasi-Newtonian algorithms build up a work-
its range) or local (the extreme value ¢gf in a  ing approximation to the second-derivative matrix
neighborhood containing the value) (see Figure 1).from successive values of the first derivative. If com-
Generally, it is the global extremum that we want. puter memory is very critical, then conjugate gradi-
(A maximum likelihood estimator, for example, is ent methods make the same assumptions as quasi-
by definition the global maximum of the likelihood.) Newtonian methods but require only storage of order
Unfortunately, distinguishing local extrema from the N [6, Section 10.6]. If even first derivatives are not
global extremum is not an easy task. One heuristicavailable, the Nelder—Mead downhill simplex algo-
is to start the iteration from several widely varying rithm is compact and reasonably robust. However,
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the slightly more complex direction-set methods or iteration the midpoint is always the same fraction of
Newtonian methods with finite-difference approxi- the way from one endpoint to the other (the so-called
mations to the derivatives should minimize most golden ratio). Afterk iterations, the minimum is
functions with fewer function evaluations. Although bracketed in an interval of length — a) x 0.6180%.
all the above comments apply generally, the one- The golden section search is a linear method in
dimensional problem is something of a special casethat the amount of work required increases linearly
In one dimension, once one can provide an inter-with the number of significant figures required for
val that contains the solution, there exist efficient There are a number of other methods, such as the
‘low-tech’ algorithms robust enough to take on all secant method (see below), the method of false posi-
problems. tion, Muller's method, and Ridder's method, which
A practical introduction to optimization is given in are capable of superlinear convergence, wherein the
Chapters 10 and 15 (Sections 15.5 and 15.7) of [6]lnumber of significant figures liberated by a given
More specialist texts include [2]—-[4]. A survey of amount of computation increases as the algorithm
available software is given by [5]. converges. The basic idea is thashould be roughly
linear in the vicinity of a root. These methods inter-
) ] polate a line or a quadratic polynomial through two
One Dimension or three previous points and use the root of the poly-
i i i i i nomial as the next iterate. They therefore converge
The case wherex is one-dimensional is not just .16 ranidly than golden search when the function
a speqal case, it is quall'ﬁatn./ely simpler than theg is smooth, but they may converge slowly when
multidimensional case. This is .because a sqlquqS not well approximated by a low-order polynomial.
can be trapped between bracketing values, which arG"iLhey also require modification if they are not to risk

gradually brough_t together. A minimum_ o (x) ?S throwing the iteration outside the bracketing interval
bracketed by a triplet of values,< b < ¢, if f(b)is known to contain the root.

Ies1s_r:har) bolﬂf(a) Zmdf (©) (see Figurrle dlz‘. ; . It is an advantage to use one of the higher-order
- e.s',:.np est ;‘1” m(lj;t ro ust'g metho r?r g.ncuoninterpolating methods when the functignis nearly
minimization 1S the goiden Section Search. LIVeN ajaeq, pyt to fall back on the bisection or golden

_bracketing_ triplet of poi_nts, the next point to be tried search methods when necessary. In that way a rate
IS that_ Wh'.Ch IS a fract!on 0.38197 of the way frqm of convergence at least equal to that of the bisection
the. mldpqlnt .Of the triplet 1o the farther er_ldpomt or golden search methods can be guaranteed, but
(point D in E|gure 1). One then drops Wh|c_hever higher-order convergence can be enjoyed when it is
of the endpomts.ls farthest frpm the new minimum. ossible. Brent [1] has published methods that do
The strange choice of step size ensures that at ea(,{t)ﬂe necessary bookkeeping to achieve this and that
can be generally recommended for root finding or
minimizing in one dimension [6]. Brent's algorithms
do not require the derivatives gfor g to be supplied.
However, the method for minimizing a function can
be easily modified to make use of the derivative when
it is available [6].

f(x)

|
|
i Newton’s Method
|
|

! The most celebrated of all methods for solving a
nonlinear equation is Newton’s method, also called
X the Newton—Raphson method. Newton’s method is
Figure 1 The golden search method. The functigir) based on .the idea of apprOX|mat|gg/\(|th its linear
has a local minimum at, and a global minimum aty. Taylor series expansion about a working vakyelLet

The points A, B, and C bracket the global minimum. The G(X) be the matrix of second derivatives 6fx) with
next point tried by a golden section search would be D  respect tox. Using the root of the linear expansion
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as the new approximation gives number of significant places eventually doubles with
L each iteration. However, its global convergence prop-
Xk+1 = Xk — G(Xk) ™ "9(Xk) (2)  erties are poor. Ik is unlucky enough to occur near

a turning point ofg, the method can easily ‘explode’,
Newton’s method is illustrated in Figure 2(a). The sending the next estimate far out into the parame-
same algorithm arises by approximatiffgwith its  ter space (Figure 2b). In fact, the set of values for
quadratic Taylor series expansion abautand find-  \yhich Newton’s method does and does not converge
ing the local extrema of the quadratic. Beware,cgn produce a fractal pattern [&g¢ Fractal dimen-
though, that Newton’s method as it stands will con- sions.
verge to a maximum just as easily as to a minimum.  The problems with Newton’s method are (a) in-
If f is a log-likelihood function, thewy is the score  apjlity to distinguish maxima from minima, and
Newton's method for maximizing the likelihood is |ems can be solved effectively through a restricted-
based on the same quadratic expansion that underliegtep suboptimization [3]. A condition for a minimum
asymptotic maximum likelihood theory. of f(x) is thatG(x) be positive definite. We there-

Newton’s method is powerful and simple to imple- fore add a diagonal matrix t6 to ensure that it is
ment. It will converge to a fixed point from any suf- positive definite

ficiently close starting value. Moreover, once it starts

to home in on a root, the convergence is quadratic. Xp+1 = Xk — [CG(Xg) +Ak|]*1g(xk) 3

This means that if the error is the error after one

more iteration is of order?. In other words, the It is always possible to choose sufficiently large

so thatf (Xx+1) < f(Xx). A simple algorithm, then,

is to choose\; just large enough to ensure a descent

step. As the iteration converges to a minimuiy,

can be decreased towards zero so that the algorithm
enjoys superlinear convergence. This is the algorithm

of choice when derivatives of are available.

If G(xx) can be guaranteed to be positive definite
without the addition of a diagonal matrix, then an
alternative and popular strategy is to use a line search
suboptimization. In this case we can replace the
Newton step with

9(x)

Xir1 = Xk — kG O%) " Lg(xx) 4)

@
where O< o < 1. It is always possible to choose

ay sufficiently small thatf (xx+1) < f(Xk). The line
search idea is to implement a one-dimensional subop-
timization at each step, minimizing(Xy+1) approx-
imately with respect ta.

Both the restricted step and the line search algo-
: rithms have global convergence properties. They can
; be guaranteed to find a local minimum ¢fand a
: root of g if such exist.
|
|

9(x)

Quasi-Newton Methods

b
® One of the drawbacks of Newton’s method is that it

Figure 2 Newton's method: (a) quadratic convergence equires the analytical derivativ@ at each iteration.
from starting pointr; (b) divergence from starting valug This is a problem if the derivative is very expensive
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or difficult to compute. In such cases it may be class) the Fisher informatior, (x) = E[—G(X)], is

convenient to iterate according to much simpler in form than-G(x) itself. Furthermore,
sincel (x) = var[g(x)], 1 (X) is positive definite for

X =x — AL Xg) 5) ; ioti
k+1 k k- 9k any parameter value for which the statistical model

is not degenerate. The quasi-Newton method which

replaces—G(x) with I (x) is known as Fisher's

method of scoring [7, Section 5¢g]. Fisher scoring is

linearly convergent, at a rate that depends on the

relative difference between observed and expected
_80) — g0g—1) 6 information [9].

= Xk — Xp_1 ®6) Consider the special case of nonlinear least

) o ) squares $ee Least squares, genergd] in which
Such an iteration is called a quasi-Newton method. Ifcontext Fisher scoring has a very long history and

Ay is positive definite, as it usually is, an alternative js known as the Gauss—Newton algorithm. The
name is variable metric method. objective function is

One positive advantage to using an approximation
in place ofG is thatA; can be chosen to be positive n 2
definite, ensuring that the step will not be attracted FB) = [yi— nti, p)] (7)
to a maximum of f when one wants a minimum. i=1

Another advantage is thab; 'g(x) is a descent where they; are observations, and is a general
direction fromxy, allowing the use of line searches. fynction of covariate vectors; and the vector of
The beSt knOWn qUaSi-NeWton method in Statisti' unknown parameterﬁ_ Write y for the vector ofyl.’

treated in more detail below. Among general purposematrix of u with respect tog. The Fisher scoring
quasi-Newton algorithms, the best is probably thejteration becomes

Broydon—Fletcher—Goldfarb—Shanno (BFGS) algo-

rithm. The BFGS algorithm builds upon the earlier Brir=Br + i i) LTy — ) (8)

and similar Davidon—Fletcher—Powell (DFP) algo-

rithm. The BFGS algorithm starts with a positive Where all terms on the right-hand side are evaluated

definite matrix approximation t6&(xg), usually the —at Bx. The updated estimate is obtained by adding

identity matrix. At each iteration it makes a min- t0 i the coefficients from the multiple regression

imalist (rank two) modification toA; ! to gradu- Of the residualsy — u on the derivative matrix.

ally approximateG(x;)~1. DFP and BFGS are both The Gauss—Newton algorithm therefore solves the

robust algorithms showing superlinear convergence.nonlinear least squares problem by way of a series of
Statisticians might fall into the trap when using linear regressions.

algorithms such as BFGS or DFP of thinking that ~ The Gauss—Newton algorithm can be speeded up

the final approximatiom ;! is a good approximation ~considerably in the special case that some of ghe

to G—1(x;) at the final estimate. Sino&; is chosen appear linearly inu. For example, if

to approximateG(x;) only in the directions needed —Bat; _ Bt

for the Newtonian step, however, it is useless for the ultis ) = pre + poe ®

purpose of providingstandard errors for the final

estimates.

where A is an easily computed approximation to
G(xx). For example, in one dimension, the secant
method approximates the derivative with the differ-
ence quotient

then 81 and 8> are linear parameters. In such cases,

the Gauss—Newton iteration can be restricted to the

nonlinear parametergs and 4. This idea is known

Fisher's Method of Scoring as separable least squares [8, Section 14.7]. The same
principle is discussed in the context of maximum

Of frequent interest to statisticians is the case wherdikelihood estimation in [9].

f(x) is alog-likelihood function and is the vector of Perhaps the most important application of Fisher

unknown parameters. Thenis the score vector and scoring is togeneralized linear models(GLMs).

—G is the observed information matrix. For many GLMs extend the idea of nonlinear regression to

models (curved exponential families are the majormodels with non-normal error distributions, including
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logistic regressionand log-linear modelssge Cate-
gorical data) as special cases. GLMs assume that

Nonderivative Methods

is distributed according to a probability density or The Nelder—Mead downhill simplex algorithm is a

mass function of the form

o 2 2 1
Pr(y; 0i,0%) = a(y, o )eXp{(ﬁ[yGi - b(9i)]} (10)
for some functionsb and a (a curved exponen-

tial family). We find that Ey;) = u; = b'(¢;) and
var(y;) = o2v(ui), wherev(u;) = b (6;). If the mean

popular derivative-free optimization method. It is
based on the idea of function comparisons among a
simplex of N + 1 points. Depending on the function
values, the simplex is reflected or shrunk away from
the maximum point. Although there are no theoretical
results on the convergence of the algorithm, it works
very well on a range of practical problems. It is a

w; of y; is as given above for nonlinear least SquareS’QOOd choice when a one-off solution is wanted with

then the Fisher scoring iteration fgris a slight mod-
ification of the Gauss—Newton iteration

Bir1 =B+ VI LTV iy — )

whereV is the diagonal matrix of the(u;). The
update forg is still obtained from a linear regres-
sion of the residuals om, but now the obser-

11

minimum programming effort. It can also be used to
minimize functions that are not differentiable.

If the user is prepared to use a more complex pro-
gram, the best-performing methods for optimization
without derivatives are quasi-Newton methods with
difference approximations for the gradient vector.
These programs require only the objective function as
input and compute difference approximations for the

vations are weighted inversely according to their gerivatives internally. Note that this is different from

variances.

computing numerical derivatives and inputing them

Classical GLMs assume a link-linear model of 55 derivatives to a program designed to accept ana-

the form
h(ui) =X B

for some link functionk. In that case the Fisher
scoring update can be reorganized as

12

Brs1 = (XTWX)~IXTWz (13)
where z is a working vector with components
zi =W (i) (i — wi) + h(n;), and W is the diag-
onal matrix of working weights A4 (wi)2v(wi)].
The updatedg is obtained from weighted lin-
ear regression of the working vectar on X.

Since X remains the same throughout the itera-

lytical derivatives. Such a strategy is unlikely to be
successful, as the numerical derivatives are unlikely
to show the assumed analytical behavior.

A close competitor to the finite-difference methods
are direction set methods. These methods perform
one-dimensional line searches in a series of directions
that are chosen to be approximately orthogonal with
respect to the second-derivative matrix. The best
current implementation is given by Brent [1].

Another optimization strategy that usually does
not require derivatives is the expectation—maximi-
zation (EM) algorithm . Properly speaking, this is
not an optimization method in its own right but

tion, but the working weights change, this iteration rather is a statistical method of making optimiza-

is known asiteratively reweighted least squares
(IRLS).
When the observations; follow an exponential

family distribution, observed and expected informa-

tion easier. The idea is to view the dataset as an
incompletely observed version of a larger dataset for
which the optimization would be very easy. One max-
imizes the expectation of the log-likelihood of the

tion coincide so that Fisher scoring is the samelarger data-set, given the observed data. Since the

as Newton’s method. For GLMs this is so if
is the canonical link that is defined by(w;) = 6;.

We can conclude from this that IRLS is quadrat-

ically convergent for logistic regression and log-
linear models but is linearly convergent for bino-
mial regression with a probit link sée Probit
model), for example. In practice, rapid linear con-
vergence is difficult to distinguish from quadratic
convergence.

expectation itself depends on the unknown parame-
ters, and these are updated by the maximization, it
is necessary to iterate between the maximization and
the expectation until convergence. The EM algorithm

converges linearly at a rate determined by the propor-
tion of the completed data that is actually observed.
Compared with derivative-based optimization meth-

ods, the EM algorithm tends to converge slowly but

surely.
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Simulated annealing and genetic algorithms areAn alternative decision tree for choosing software,
designed to minimize functions that are not smoothwith special attention to global optimization, is
and that may have many local minima. Simulatedgiven at

annealing algorithms introduce a random element into

the iteration process, giving the algorithm a chance http://plato.la.asu.edu/guide. htm/

to escape from a local extremum. Genetic algorithms

carry information about multiple candidates for the References
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