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Abstract: This paper considers double generalized linear models, which allow
the mean and dispersion to be modelled simultaneously in a generalized linear
model context. Estimation of the dispersion parameters is based on a x3 approxi-
mation to the unit deviances, and the accuracy of the saddle-point approximation
which underlies this is discussed. Approximate REML methods are developed for
estimation of the dispersion, and these are related to the likelihood adjustment
methods of McCullagh and Tibshirani (1990) and Cox and Reid (1987). The
approximate REML methods can be implemented with very little added com-
plication in a generalized linear model setting by adjusting the working vector
and working weights. S-Plus functions for double generalized linear models are
described. Through two data examples it is shown that the approximate REML
methods are more robust than maximum likelihood, in the sense of being less
sensitive to perturbations in the mean model.
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1 Introduction

Generalized linear models allow us to model responses which are not nor-
mally distributed, using methods closely analogous to linear methods for
normal data (McCullagh and Nelder, 1989). They are more general than
normal linear methods in that a mean-variance relationship appropriate
for the data can be accommodated and in that an appropriate scale can
be chosen for modelling the mean on which the action of the covariates
is approximately linear. On the other hand, once the mean-variance rela-
tionship is specified, the variance is assumed known up to a constant of
proportionality, the dispersion parameter. While generalized linear mod-
els continue to be extremely useful, the complexities often encountered in
observed data and the possibilities opened by modern computing power en-
sure that there is a strong need now for even more flexible models. Modern
requirements are for models which include random effects, non-parametric
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trends and non-homogenous dispersion. A comprehensive attack on many
real problems in biomedical or environmental research would involve an
integration of these and other components. In this paper we concentrate
on non-homogeneous dispersion and the modelling of dispersion in terms
in covariates.

It is well known that efficient estimation of mean parameters in regression
depends on correct modelling of the dispersion. The loss of efficiency in
using constant dispersion models when the dispersion is varying may be
substantial. Modelling of the dispersion is also necessary to obtain correct
standard errors and confidence intervals, as well as for many other appli-
cations such as prediction, estimation of detection limits or immunoassay
(Carroll, 1987; Carroll and Rupert, 1988). In many studies, modelling the
dispersion will be of direct interest in its own right, to identify the sources
of variability in the observations.

Many authors have considered dispersion modelling for normal data, for
example Aitkin (1987), Carroll (1987), Davidian and Carroll (1987), Carroll
and Rupert, (1988). Smyth (1989) showed that similar methods could be
used for a certain class of non-normal generalized linear models. In this
paper we extend Smyth’s (1989) methods to arbitrary generalized linear
models by using the saddle-point approximation to the distribution of the
responses.

Before dispersion modelling can take place, it is necessary to estimate the
mean of the data accurately. For this reason, dispersion modelling takes
place in the presence of a (possibly large) number of nuisance parameters.
It is well known that maximum likelihood estimators for variance param-
eters in regression models are generally biased. For normal linear models
it is common to use residual or restricted maximum likelihood (REML)
instead of maximum likelihood to estimate parameters affecting the vari-
ances. REML maximizes the likelihood, not of the original observations,
but of a set of zero mean contrasts. This has the effect of adjusting for
available degrees of freedom, and produces estimators which are at least
approximately unbiased.

The generalization of REML to non-normal models is not obvious, as zero
mean contrasts do not generally exist. Several general methods of adjusting
likelihood methods for nuisance parameters have been proposed, including
Cox and Reid (1987), McCullagh and Tibshirani (1990) and Smyth and
Verbyla (1996), which reduce to REML for normal linear models. In this
paper we use the approach of McCullagh and Tibshirani (1990) to adjust
the score vector and information matrices for leverage effects. We find that
this requires minimal modification to the standard computations in a gen-
eralized linear model context. We note that the adjustments agree with Cox
and Reid (1987) to second order, but not with the saddle-point conditional
likelihood given by Smyth and Verbyla (1996).

Verbyla (1993) shows that REML estimators in normal linear regression
enjoy a hitherto unappreciated robustness property, of being less sensitive
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than the maximum likelihood estimators to perturbations in the model.
This property supports the notion that REML can be considered more re-
liable than maximum likelihood in small samples. We show, through two
data examples, that our adjusted likelihood methods also enjoy this prop-
erty in this more general context.

Section 2 of this paper introduces double generalized linear models, in which
the mean and the dispersion are modelled simultaneously. The saddle-point
approximation and its accuracy is discusses in Section 3. Section 4 discusses
generalizations of REML to non-normal models. The application to double
generalized linear models is set out in Section 5, and two data examples
are worked through in Section 6. S-Plus functions to fit double generalized
linear models are also described. The paper finishes with a summary and
pointers to software availability.

2 Double Generalized Linear Models

Suppose we observe independent responses y;, ¢ = 1,...,n, together with
covariate vectors x; and z;, and possibly unequal weights w;. Generalized
linear models assume that the density of y; can be written in the form

£y iy d/wi) = aly, /w;) exp[%{yei — K(0,)}]

for suitable functions x and a (McCullagh and Nelder, 1989). Here p; =
E(y;) = #(60;), and vary; = (¢/w;)V (1;), where V(u;) = K(6;) is a known
function. The function V is called the variance function, and captures the
mean-variance relationship for the data. The dispersion parameter, ¢, can
be interpreted as the variability in y; once dependence of the variance on
the mean and weights has been taken into account.

Following Jgrgensen (1987), we say that y; follows an ezponential dispersion
model with mean u; and dispersion ¢/w;, and write y; ~ ED(u;, ¢/w;).
At first sight, its seems somewhat restrictive to assume such a specific
distributional form for y. However Jgrgensen (1987) showed that x can be
any moment generating function, i.e., any distribution with a well defined
moment generating function belongs to an exponential dispersion model.
Double generalized linear models provide a framework for modelling the
dispersion in generalized linear models as well as the mean (Smyth, 1989).
We assume that y; ~ ED(u;, ¢;/w;). Generalized linear models tradition-
ally assume that the means p; can be modelled via link-linear relationship
g(1;) = xI' B where g is a known link function and 3 is a vector of unknown
regression coefficients. Double generalized linear models assume a second
link-linear predictor for the dispersion h(¢;) = z! A where h is another
known link function, and z; is a vector of covariates affecting the disper-
sion. In principle, p; and ¢; could be quite general functions of 8 and A,
and could include non-parametric trend terms. For simplicity however, we
concentrate on the traditional link-linear relationships in this paper.
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3 Estimation

3.1 The Dispersion Submodel

For our purposes it is more informative to re-write the density of y; in the
form

£y . 8) = by, 6) exp{f%d@, )} (1)

where d is a distance measure between y and p. For most distributions
of interest, d can be obtained as d(y,u) = 2w;{t(y,y) — t(y, )} where
t(y, 1) = yf — k(6). For normal data, d is the squared residual w;(y — p;)?
and ¢ is the variance. The family of densities defined by (1) for different
d has been intensively studied by Jergensen (1997), and is in a sense the
most general distributional form for y for which p can be interpreted as
a location parameter and ¢ as a dispersion parameter. The saddle-point
approximation states that b(y, ¢) ~ {27V (y)}~/? as ¢ — 0, the relative
error being O(¢) (Jorgensen, 1997, page 103). This is appreciably more
accurate than the normal approximation to the density f(y;u, @), which
has additive error of O(¢'/?) (Barndorff-Nielsen and Cox, 1989).

Write d; = d(y;, 1;). Direct computation of the moment generating func-
tion by integrating exp d(y;, pt;) times the saddle-point density shows that
d; ~ ¢;X? approximately as ¢; — 0, the convergence being O(¢;). Since the
X7 distribution is a special case of the gamma distribution, this suggests an
iterative scheme for estimating 8 and A simultaneously. Given any working
value for A, we can estimate 3 using an ordinary generalized model for the
y; with weights w;/¢;. Given any working value for 3, we can estimate
A using a gamma generalized linear model for the d;. We call the gamma
generalized linear model, used to estimate X for fixed 3, the dispersion sub-
model. The dispersion submodel has its own dispersion, parameter, which
is 2. This estimation scheme, which alternates between estimating 3 for
fixed XA and A for fixed B, works particularly well because 3 and A are
orthogonal parameters.

3.2 Accuracy of the Saddle-Point Approximation

The saddle-point approximation which underlies the dispersion submodel is
fundamental for generalized linear model theory. Apart from supporting the
estimation scheme above, it is this theorem which asserts that the deviance
residuals should be approximately normal, and that the residual deviance
should follow approximately a chisquare distribution on the residual degrees
of freedom (Jgrgensen, 1997). It is therefore of considerable interest to
obtain reliable guidelines regarding the accuracy of the approximation.

The saddle-point approximation is exact when the y; are normal or inverse-
Gaussian. In these cases the unit deviances d; are exactly ¢;x7. In other
cases we use the following rule of thumb to judge the accuracy of the approx-
imation. Let 7; = ¢;V (y;)/(y; — boundary)? where “boundary” represents
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the boundary of the support of y. For a gamma or Poisson distribution,
the only boundary is at zero. For a binomial distribution with n trials,
there are boundaries at zero and n. In the definition of 7;, we take the
closest boundary to y;. We will take the saddle-point approximation to be
satisfactory when 7; < 1/3 for all <. When this condition in satisfied we
have good reason to treat the deviance residuals as normal and to use the
gamma dispersion submodel outline in the previous subsection.

This rule of thumb has both heuristic and theoretical justifications. We
describe the heuristic first. It is well known that unimodal distributions
are often approximately normal when the mean is more than two or three
standard deviations from the boundary of the distribution. This rule works
well for the binomial and Poisson distributions for example. Knowing that
the accuracy of the saddle-point approximation depends on y and ¢ but not
on p, we consider a distribution with mean equal to the observed response
y. Then ,/7; measures the number of standard deviations separating the
mean from the boundary of the distribution. Since /7; < 1/3 would usually
be sufficient for normality, and since the saddle-point error is of the order
of the normal approximation error squared, we take 7; < 1/3 as the cutoff.
The theoretical justification applies to generalized linear models with power
variance functions, V' (y) = u? for some p. For p > 1 the only boundary is
at zero, and 7, = ¢;y? ~2 is the squared coefficient of variation. Following
Jorgensen (1997), we call the distributions with power variance functions
Tweedie models, in honor of Tweedie (1984). This family includes many dis-
tributions of interest, including the normal, Poisson, gamma and inverse-
Gaussian distributions. For Tweedie models with p > 1, it can be shown
that the relative error of the saddle-point approximation to f(y; i, @) is in
fact a non-decreasing function of 7. For the gamma distribution for exam-
ple, the saddle-point approximation consists of replacing I'(1/¢;) with its
Stirling’s formula approximation. In this case 7, = ¢; < 1/3 ensures that
the saddle-point relative error is less than 2.8%. For the Poisson distribu-
tion, the saddle-point approximation replaces y;! with Stirling’s formula.
In this case 7; = 1/y; < 1/3 ensures that the relative error is again less
than 2.8%.

The binomial distribution is the most important example which does not
belong to the Tweedie family. In this case 7; < 1/3 essentially requires that
y > 3 and n —y > 3, which insures that the saddle-point approximation is
at worst accurate to 4%.

When the y; are gamma, the saddle-point approximation is not exact but
can be modified to obtain exact results, as was shown by Smyth (1989).
In that case the d; follow exactly a digamma distribution, and the mean
and variance function of the dispersion submodel can be modified to ob-
tain exact maximum likelihood results. We neglect this refinement in this
paper, as it is important only for gamma responses with moderate to large
¢;. Computer programs referred to in this paper however do compute the
refinement when it is available.
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4 Likelihood Adjustments

For a general weighted normal linear model,
y ~ N(XB,%(X)) (2)

with ¥ depending on a vector A of unknown parameters, the REML method
is to estimate A from the distribution of the fitted residuals. Let @ be any
n x (n—k) matrix of rank n—k orthogonal to X . Then @ spans the residual
space of the linear model. REML estimation maximizes the likelihood of
Q"y instead of that of y, i.e.,

Q"y ~ N(0,QT2Q)

This leads to an approximately unbiased estimator for A, and one which
may be consistent even if k increases at the same rate as n. Estimation of
A is not affected by the specific choice of Q.

It is not obvious how the idea of REML can be extended to non-normal or
non-linear models, because in general mean zero contrasts, such as those
which make up the columns of ), do not exist. There are however a number
of general strategies designed to deal with nuisance parameters which agree
with REML for normal linear models. In the general setting, we consider
a log-likelihood function £(y; 3, A) = log L(y; B, A). We wish to estimate A
in the presence of the vector 3 of nuisance parameters.

Firstly, if we could specify completely priors for all the parameters, then
inference for A would proceed through the marginal posterior distribution
for A. The posterior distribution for the parameters is

L(y; B, \)p(B, A)
p(y)

p(B, Aly) =

where p(3, A) is the joint prior of B and A, and p(y) is the marginal dis-
tribution of y. The marginal posterior distribution for A alone is obtained
by integrating out the nuisance parameters,

p(Ay) = / p(B, Mly)ds3

In the normal linear model (2), the posterior density p(A|y) is proportional
to the REML likelihood if the prior for 3 and A is flat in the neighborhood
of interest (Harville, 1974). This shows that REML can be viewed as the
Bayesian principle of marginal inference.

In many cases, for example when priors are not available, we want to base
inference entirely on the likelihood function. Let 3 \ be the maximum like-
lihood estimator of 3 for a given fixed value of A. The profile log-likelihood
for A is (y; B s A). A number of methods have been proposed for modify-
ing the profile log-likelihood to reduce its dependence on B. These involve
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conditioning on a suitable statistic, such as ﬁ », which is asymptotically
sufficient for 3. Fundamental work on modified profile likelihoods is by
Barndorff-Nielsen (1983). See also Barndorff-Nielsen and Cox (1994). Cox
and Reid (1987) proposed a simplification of Barndorff-Nielsen’s modified
profile likelihood, which is applicable when 3 and A are orthogonal. Cox
and Reid’s approximate conditional log-likelihood is

(B ) — 5 1081758y )

where Jj3 is the observed information matrix for 3. This reduces to the
REML log-likelihood for normal linear models.

A third strategy is to directly correct the profile score function for non-zero
expectation (McCullagh and Tibshirani, 1990). Let

ol -
AN=F— A
U(/g? ) aA (/6)\7 )
An approximately unbiased estimator of A can be obtained from the esti-
mating equation
ol - .
87(/8)0A) - U(I@)NA) =0
Again, this approach leads to REML for the normal linear model.

5 Approximate REML for Double GLMs

Standard generalized linear model theory tells us that, for fixed A\, maxi-
mum likelihood estimators of B can be obtained by solving the weighted
least squares equation

X"W,, XB = X"W,,z, (3)

repeatedly, where W, is a diagonal matrix of working weights

. W;
Wn = diag (@‘9(#1)2‘/(#1))

and z,, is the vector of working responses g(u;)(y; — i) + g(pi). At each
iteration, the weight matrix W,,, and working vector z,, are updated, and
the equation is solved again for 3. This is known as iteratively reweighted
least squares.

A similar weighted least squares equation exists for maximum likelihood
estimator of A given (3, namely

ZT"WaZX\ = ZT"Wazqg (4)

where

Wa = diag (W)
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and zg; = h(¢;)(d; — ¢3) + h(¢;). Full maximum likelihood estimation for
all parameters can be obtain by alternating between of the iteration for 3
and the iteration for A until overall convergence is obtained (Smyth, 1989
and 1996).

The least squares equation (3) for B has “Hat matrix”

H=WY"X(XTW,, X) ' xTw/?2

We will write h; for the diagonal elements of H, often known as leverages.
By expanding 3 about 3 in a Taylor series expansion, it can be shown that

E{d(yi, i)} = ¢i(1 — hi) + O(n™?) (5)

where [i; is p; evaluated at ,3 - Here we are assuming the Fisher information
increases at the same rate as the sample size n, i.e., the minimum eigenvalue
of XTW,,X is O(n) as n increases. The result is even more accurate in the
case that the generalized linear model uses a canonical link, for example
reciprocal for the gamma distribution. In that case, the error in (5) is
O(n=3). In the special case of linear regression, (5) agrees with the well
known result that E{(y; — fi;)?} = 02(1 — h;) where o is the variance of
the y;. This suggests that we modify the working vector in the dispersion
submodel from that given in the previous paragraph to to 2}, = h(qzﬁz){dZ —
(1 = hy)¢i} + h(¢;). An approximately unbiased estimator of A can be
obtained by solving (4) with z in place of z.

It is interesting to note that differentiating the Cox and Reid (1987) ap-
proximate conditional likelihood can also be shown to lead to (5). However
the saddle-point approximate conditional likelihood given by Smyth and
Verbyla (1996) gives a different but related expression, which collapses to
(5) in the normal case.

Considerable further computation with Taylor series expansions also leads
to an expression for the variance of d(y;, fi;), from which an expression
for the variance of the adjusted X can be obtained as in McCullagh and
Tibshirani (1990). This leads to var(A) = Z, with Zy, = $ZTW;Z and

h,
W =W, — 2diag [ ———— | + H?
a7 e e <¢%h<¢i>2)

Here H? represents the matrix (h?j) where h;; are the elements of the hat
matrix H. (Note also that h(¢) represents the dispersion link function,
which is unrelated to H and the h;.)

This gives a very straightforward scheme for converting maximum likeli-
hood estimation for A to approximate REML. In the iteratively reweighted
least squares update (4) for A, we simply change z,4 to z; = (2}, . .., z(’gn)T
and the weight matrix Wy to W. This will ensure not only that the esti-
mator \ is approximately unbiased, but also that the dispersion submodel
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will give correct adjusted standard errors. In practice the matrix H? is
expensive to calculate, so we approximate it with diag(h?). This gives

h
Wi ~ Wy — 2diag | ———— + h?
<¢?h(¢i)2

In many practical examples the dispersion link h is logarithmic. In that
case, the expression for W, simplifies considerably. Using h(¢) = 1/¢; and
Va(¢;) = ¢7 we have W ~ diag(1 — h?).

6 Diagnostics and Examples

It is well known that REML estimation leads to estimators for the variance
parameters which are more nearly unbiased than does maximum likelihood
estimation. It is less well known that REML estimators are also more ro-
bust, in the sense of being less sensitive to perturbations of the data (Ver-
byla, 1993). This arises because of the allowance for effective degrees of
freedom in the mean model. The REML estimators are less likely to follow
an aberrant fitted value with a very high leverage value. In this section we
show, through two data examples, that our approximate REML method
also shares this property. While we demonstrate the principle for these
two examples only, the robustness of the approximate REML likelihood
to changes in the mean model can be expected to hold generally, because
of the relationship of approximate REML with marginal likelihood. The
likelihood must be, by definition, lower at the REML estimators than it is
at the ML estimators. At the same time, the likelihood as the mean varies
from the REML estimators must be greater than that as the mean varies
from the ML estimators, since the likelihood integrated over all the mean
values must be greater at the REML estimators. It follows that the maxi-
mum occurs at a relatively sharp peak of the likelihood, while the REML
estimator is associated with a flatter plateau of high likelihood values.
The sensitivity of the REML estimators is investigated in this paper using
the mean slippage or shift outlier model. The slippage model for an outlier
at observation j is

() :X?ﬂ—i—(ej, i=1,....n
This perturbation of the mean model has the effect of introducing a unit
leverage for the jth case.

6.1 Poison Experiment

Box and Cox (1964) describe an experiment involving 3 poisons and 4
treatments or antidotes. The experiment was conducted as a 3 x 4 factorial
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FIGURE 2. Normal probability plots of residuals for the Poison experiment. Left
plot assumes reciprocal normal survival times and the right plot assumes a quartic
variance function.

experiment with 4 replicates, and the response is the survival times of the
animals.

A plot of the log-sample variance against log-sample mean for each poison-
treatment combination gives a nearly linear trend with slope nearly equal to
4 (Figure 1). This strongly suggests V(i) = u*. The approximate variance
stabilizing transformation for this power variance function is the reciprocal
transformation, and Box and Cox (1964) for this reason treated the recip-
rocal times as normally distributed. An alternative approach is to directly
analyze the survival times using a generalized linear model with variance
function V(u) = pt.

Figure 2 shows the normal probability plot of the residuals from fitting a
two-way interaction model with reciprocal normal times, and the normal
probability plot of the residuals from a Tweedie generalized linear model
for the survival times with power variance function V(u) = p*. In this
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case the maximum value of 7 = q@ﬂ?fz is 0.15, so we can be confident
that the deviance residuals from the generalized linear model should be
approximately normal. The reciprocal normal probability plot shows slight
skewness to the right. The power variance function probability plot shows
slight left skewness. Overall we feel that the probability plot for the power
variance function is at least as satisfactory as that for the reciprocal normal
model, and we proceed to analyze the data using this approach. This has
the advantage of directly analyzing the observed responses on their own
scale.

To fit a generalized linear model with power variance function, we use the
S-Plus family function tweedie, written by one of the authors, which is
available from the URL listed at the end of the paper. The command for
fitting the quartic Tweedie generalized linear model is

glm(Time ~ Poison*Treatment,
family=tweedie(var.power=4,link.power=0))

Here var.power = p specifies the mean variance relationship V(u) = pP
and link.power = g specifies a power link function, uf = x!' 3, with ¢ = 0
indicating the logarithmic link.

A double generalized linear model is fitted using the S-Plus function dglm,
for example

out <- dglm(Time~Poison*Treatment,~Poison,
family=tweedie(var.power=4,link.power=0) ,method="reml")

Here the first argument specifies a model formula for the mean submodel,
and the second argument does the same for the dispersion submodel. Max-
imum likelihood estimation or approximate REML may be chosen through
the method argument. The function dglm produces an object of class “dglm”.
There are special summary and anova methods written for the class. For ex-
ample summary (out) will print estimated regression coefficients, standard
errors and the overall likelihood for the fitted model, while anova(out) will
print a table of likelihood ratio tests for the mean and dispersion submod-
els. Full programs and help file are available from the WWW site listed at
the end of this paper.

In S terminology, the object class dglm is constructed so that it inherits
from the classes “Im” and “glm”. This means that any S-Plus function
designed for linear models (Im objects) or generalized linear models (glm
objects) can be applied to a dglm object with sensible results. Generic func-
tions with methods for glm objects, such as residuals (out), and functions
with method for Im objects, such as drop1(out), will produce results for
the mean submodel. To treat the dispersion submodel as an ordinary gen-
eralized linear model, use residuals(out$disp), dropl(out$disp) and
SO on.

For this data we find no mean model interaction between Poison and Treat-
ment. In the dispersion model, we do find a main effect for Poison. The
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FIGURE 3. Displacements of the dispersion coefficient under mean slippage mod-
els for the Poison experiment.

estimated dispersion for Poison 2 is nearly three times as large as those
for Poisons 1 and 3. The contrast for Poison 2 versus the average of the
other two log-dispersions has a log-likelihood ratio test statistic of 5.96,
which has P-value of 0.015 as a chi-square random variable on one degree
of freedom. This is similar to the result found by Aitkin (1987), treating
the survival times as reciprocal normal.

We now examine displacement of the dispersion parameter in response to
mean slippage models. We fit the mean model Time ~ Poison+Treatment
and the dispersion model ~ Poison2, where Poison2 is the factor distin-
guishing the second poison from poisons 1 and 3. We compute the change
in the coefficient for Poison2 under slippage models, i.e., as the indicator
vector e; for case j is added to the mean model. The results are given in
Figure 3. We see that the larger displacements are all reduced for REML
estimation compared with ML estimation. This shows that the REML es-
timation of the dispersion model is less sensitive to perturbations of the
mean model than is maximum likelihood estimation.

6.2 Blood CPK in Skiers

The data gives the blood CPK concentrations of skiers 12 hours into a cross
country ski marathon (Zuliani et al, 1983). Leakage of the enzyme CPK
into the blood is a common symptom of muscle stress. Figure 4 relates log-
CPK concentrations to the age of each skier. This shows an approximately
linear decreasing trend, and also decreasing variability, as age increases.
Attempts to stabilize the variance by using a stronger transformation than
logarithmic are unattractive because the relatively low observation for one
skier of age 33 tends to become an outlier. Instead, we model the blood
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FIGURE 4. Log-blood CPK concentration versus age for skiers in a cross-country
marathon. The solid line is the estimated median and the dotted lines are 0.1
and 0.9 quantiles of the response distribution under a gamma mean-dispersion
model.

CPK concentrations directly as gamma with a log-link. The following is
summary output from the function dglm.

Call: dglm(formula = CPK ~ Age, dformula = ~ Age,
family = tweedie(var.power = 2, link.power = 0), method = "reml")

Mean Coefficients:
Value Std. Error t value
(Intercept) 6.88658455 0.310400523 22.186124
Age -0.01902809 0.006193807 -3.072115
(Dispersion Parameters for Tweedie family estimated as below )

Scaled Null Deviance: 26.42384 on 17 degrees of freedom
Scaled Residual Deviance: 16.20617 on 16 degrees of freedom

Dispersion Coefficients:
Value Std. Error t value
(Intercept) 0.41601037 1.09056097 0.3814646
Age -0.06333238 0.02855352 -2.2180238
(Dispersion Parameter for Digamma family taken to be 2 )

Scaled Null Deviance: 66.08189 on 17 degrees of freedom
Scaled Residual Deviance: 54.391 on 16 degrees of freedom

Minus Twice the Log-Likelihood: 248.676
Number of Alternating Iterations: 11

The output shows the REML t¢-value for Age in the dispersion model as
—2.2, which has P-value 0.028 as an approximate standard normal random
variable. The likelihood ratio test statistic for Age, which can be obtained
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FIGURE 5. Blood CPK concentration: displacements of the coefficient for Age
in the dispersion submodel under mean slippage models.

separately from anova output, is 6.04 with P-value 0.014. The fitted model
for the dispersion is

log ¢; = 0.416 — 0.0633Age

which means that the dispersion decreases from 0.46 at age 19 to 0.03
at age 62. The estimated response standard deviation (]311 / 2[% decreases by
89% from age 19 to age 62. Figure 4 includes the fitted mean and dispersion
models.

Results for the displacement of the coefficient for Age in the dispersion
submodel under mean slippage models are given in Figure 5. Again we see
that the larger displacements are reduced under REML compared with ML.
Software and documentation for the S-Plus functions used are available
from the URL http://www.maths.uq.edu.au/~gks/s/.
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