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Abstract
Exact REML for heteroscedastic linear models is compared with a number

of approximate REML methods which have been proposed in the literature,
especially with the methods proposed by Lee & Nelder (1998) (LN98) and
Smyth & Verbyla (1999) (SV99) for simultaneous mean-dispersion modelling
in generalized linear models. It is shown that neither of the LN98 or SV99
methods reduces to REML in the normal linear case. Asymptotic variances
and efficiencies are obtained for these and other estimators of the same gen-
eral form. A new algorithm is suggested, similar to one suggested by Huele
et al. (2000), which returns the correct REML estimators and an improved
approximation to the standard errors. It is possible to obtain REML estima-
tors by alternating between two generalized linear models but the final fitted
generalized linear model objects will not return the correct standard errors
for the variance coefficients. The true REML likelihood calculations therefore
fit only partially into the double generalized linear model framework.
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1 Introduction

This paper considers REML (residual or restricted maximum likelihood) estimation
for heteroscedastic linear models. We suppose that the responses y1, . . . , yn are
independent and that yi ∼ N(µi, σ

2
i /wi) with

µi = xT
i β

and
g(σ2

i ) = zT
i γ

where the wi are prior weights and g() is a known monotonic differentiable function.
Here xi is a vector of covariates relevant for predicting the mean, zi is a vector of
covariates relevant for predicting the variance and β and γ are vectors of regres-
sion coefficients. The model considered is a slight generalization of that considered
by Verbyla (1993) in which it was assumed that g = log. An efficient numerical
implementation of REML for this model has been described by Smyth (2002). Our
purpose in this article is to compare exact REML with a number of approximate
REML methods which have been proposed in the literature, especially with the
methods proposed by Lee & Nelder (1998) (LN98) and Smyth & Verbyla (1999)
(SV99) for simultaneous mean-dispersion modelling in generalized linear models.
Since REML is strictly applicable only to normal linear models, the above het-
eroscedastic regression model is the most general model of the type considered by
LN98 and SV99 for which exact REML methods are possible.

We show that neither of the LN98 or SV99 methods reduces to REML in the
normal linear case. We obtain asymptotic variances and efficiencies for these and
other estimators of the same general form. We consider the question of convergence
of iterative estimation algorithms and show how to avoid the convergence problems
reported by Nelder & Lee (1998), Huele (1998) and Huele & Engel (1998). We
suggest a new algorithm which is a compromise of LN98 and SV99 and similar to
one suggested by Huele et al. (2000). The new algorithm returns the correct REML
estimators and an improved approximation to the standard errors.

The LN98 and SV99 methods were motivated by a desire to estimate the het-
eroscedastic regression model by way of two coupled generalized linear models, as in
Nelder & Pregibon (1987), Aitkin (1987), Smyth (1989) and Nelder & Lee (1991).
This approach yields significant advantages in terms of being able to use established
generalized linear model diagnostics, concepts and software — see especially SV99
who created a double generalized linear model object in S-Plus for this purpose. The
first generalized linear model is in this case just a linear regression with weights
wi/σ

2
i and is used to estimate the mean coefficient vector β. The second generalized

linear model has as responses the squared residuals or squared standardized resid-
uals from the first model and estimates the variance coefficient vector γ. Aitkin
(1987) and Smyth (1989) showed that maximum likelihood estimates for all para-
meters may be obtained by alternating between two generalized linear models in
this way. This paper shows that REML estimation is unfortunately not as straight-
forward. Although it is possible to obtain REML estimators by alternating between
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two generalized linear models, the final fitted generalized linear model objects will
not return the correct standard errors for the variance coefficients — in other words,
the uncertainty in estimating the variances is not correctly assessed without further
special purpose calculation. The true REML likelihood calculations therefore do
not fit neatly into the double generalized linear model framework.

REML estimation was introduced by Patterson & Thompson (1971) for normal
random effects models. An extensive discussion was given by Harville (1977). There
are various reasons for preferring REML over maximum likelihood for estimation
of the variances. The most frequently quoted reasons are that the estimators are
less biased and that an appropriate degree of freedom correction is produced in
standard cases (Tunnicliffe Wilson, 1989). Other reasons are that REML is related
to Bayesian marginal inference (Harville, 1974) and that REML is less sensitive
to influential observations with high leverage in the mean model (Verbyla, 1993).
Perhaps the strongest reason is that the REML score vector for the variance coef-
ficients is unbiased, providing consistent estimators in situations where maximum
likelihood estimators are inconsistent. An up-to-date review of REML etimation
can be found in McCulloch & Searle (2001).

Heteroscedastic regression models have an extensive literature going back to
Park (1966), Rutemiller & Bowers (1968) and Harvey (1976). Aitkin (1987) con-
sidered a log-linear model for the variances and developed GLIM code for maximum
likelihood estimation. The use of heteroscedastic regression is now common prac-
tice in industrial statistics for analyzing unreplicated experiments. See for example
Box & Meyer (1986a), Box & Meyer (1986b), Carroll & Ruppert (1988), Nair &
Pregibon (1988), Nelder & Lee (1991), Chapter 10 of Myers & Montgomery (1995),
Engel & Huele (1996), Bergman & Hynén (1997), Lee & Nelder (1998), Nelder
& Lee (1998), Huele (1998) and Huele & Engel (1998). In Section 8 we consider
an off-line screening experiment which examines the effect of factors on the ten-
sile strength of welds. In this type of experiment the estimated mean model is
used to choose factor settings to maximise the weld strength while the variance
model is used to minimize the sensitivity of the production process to variation in
uncontrolled factors.

In the next two sections we summarize the maximum likelihood and REML esti-
mating equations for the heteroscedastic regression model. Implementation details
for the scoring iteration to compute the REML estimates are discussed in Section 4.
REML estimation is contrasted with various approximate REML methods in Sec-
tion 5. The efficiences of the non-REML estimators are examined in Section 6 and
the accuracy of various approximations to the REML standard errors are studied
in Section 7. A data example is given in Section 8 and the paper concludes with
recommendations in Section 9.

2 Maximum Likelihood Estimation

This section summarizes maximum likelihood estimation for parameter vectors β
and γ. The results are a special case of results in Nelder & Pregibon (1987) and
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Smyth (1989).
The score vector and information matrix for β are

uβ = XT Σ−1
m (y −Xβ)

and
Iβ = XT Σ−1

m X

where Σm = vary = diag(σ2
i /wi) and X is the n × p design matrix with ith row

xT
i . The two parameter vectors β and γ are orthogonal. The score vector and

information matrix for γ are

uγ = ZT GΣ−1
d (d− σ2)

and
Iγ = ZT W−1

d Z

where d is the n-vector of di = wi(yi − µi)
2, σ2 = E(d) is the n-vector of σ2

i ,
Σd = vard = diag(2σ4

i ), G = diag{1/ġ(σ2
i )}, Wd = G2Σ−1

d and Z is the n × q
design matrix with ith row zT

i . The method of scoring for computing the maximum
likelihood estimates yields

βk+1 =
(
XT Σ−1

m X
)−1

XT Σ−1
m zm (1)

with zm = y − µ + Xβ and

γk+1 =
(
ZT WdZ

)−1
ZT W−1

d zd (2)

with zd = G−1(d− σ2) + Zγ. Here k indicates the kth iterate and the right-hand
sides are evaluated at βk and γk. The scoring iteration for β has the form of
a weighted linear regression while the scoring iteration of γ is that for a gamma
generalized linear model with responses di, link g() and dispersion equal to 2.

Smyth (1989) and Smyth (1996) have considered algorithmic strategies for im-
proving on the scoring iteration for β and γ. It turns out the convergence properties
of the iteration are improved if γ is updated as in (2) before β and then the current
γk+1 is used in (1) instead of γk. Smyth (1996) calls this a nested iteration and
shows that it improves both the global convergence properties of the iteration and
the eventual rate of convergence as the iteration approaches the solution.

It is possible to compute the maximum likelihood estimators for β and γ by
alternately fitting a linear regression with responses yi and a gamma generalized
linear model with responses di. The linear regression updates β as in (1) while
each iteration of the gamma generalized linear model fit corresponds to an update
of the form (2). In this approach it is not necessary to iterate the gamma general-
ized linear model to convergence at each step as has been done by many authors
with related models. This correponds to updating γ through (2) many times be-
fore returning to (1) and introduces a unnecessary inner iteration which can itself
introduce convergence problems. The update (2) should instead be implemented
as a one-step gamma generalized linear model fit initialized at γ = γk, and this
results in the nested iteration described above.
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3 Residual Maximum Likelihood

This section generalizes the results of Verbyla (1993) to an arbitrary link function
for the variance. The REML estimator of γ is obtained by maximizing the marginal
log-likelihood

`R(y; γ) = `(y; β̂(γ), γ)− 1

2
log |XT Σ−1

m X|

= −1

2

(
log |Σm|+ yT Py + log |XT Σ−1

m X|
)

where ` is the ordinary log-likelihood, β̂(γ) is the conditional maximum likelihood
estimator for β for given fixed γ and

P = Σ−1
m − Σ−1

m X(XT Σ−1
m X)−1XT Σ−1

m .

The REML score vector for γ is

uR = ZT GΣ−1
d (d− σ2∗)

where σ2∗ is the n-vector of (1− hii)σ
2
i and the hii are the diagonal elements of

H = Σ−1/2
m X(XT Σ−1

m X)−1XT Σ−1/2
m ,

the hat matrix in the weighted regression for β. The information matrix is

IR = Z∗T V Z∗

where Z∗ = Σ
−1/2
d GZ and V is an n × n matrix with diagonal elements (1 − hii)

2

and off-diagonal elements h2
ij, the hij being the elements of H. Here V is the

covariance matrix of the squared standardized residuals, Σ−1
m d, where d is evaluated

at β = β̂(γ). The REML scoring iteration for γ is

γk+1 = γk + I−1
R uR (3)

with IR and uR computed at γk and β̂(γ).

4 Implementation of REML Scoring

Smyth (2002) describes how to compute the REML estimators for the heteroscedas-
tic regression model considered in this paper in O(n) operations including compu-
tation of the REML log-likelihood `R and information matrix IR. The algorithm
includes a convergence check in order to ensure that the REML likelihood increases
at each iteration. Let A be an approximation to the REML information matrix IR.
The algorithm is based on the principle that λ > 0 can always be chosen sufficiently
large so that

γk+1 = γk + (A + λI)−1uR (4)
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is an ascent step for the REML likelihood. The parameter λ introduces Levenberg-
Marquardt damping and has the effect of reducing the size of the γ-step and rotating
it slightly in the direction of uR. The damping parameter is increased as required
during the iteration to prevent the REML likelihood from decreasing. If the scoring
step (4) increases the REML likelihood at first try, then λ is decreased by a pre-
determined factor for the next iteration, so that λ can be expected to approach
zero as the iteration homes in on the solution.

In principle any reasonable approximation A can be used for IR. If λ = 0 and
A = IR then the algorithm (3) is the same as REML scoring (4). Other reasonable
choices for A are A = Z∗T V1Z

∗ or A = Z∗T V2Z
∗ with Vj = diag{(1− hii)

j}. Either
of these choices has the effect of decreasing slightly the computational burden of
each iteration but at the likely cost of incurring extra iterations compared with
A = IR. The approximation V ≈ V2 has been used previously by Cook & Weisberg
(1983), Verbyla (1993) and Smyth & Verbyla (1999). However in Section 7 we will
show that V ≈ V1 often produces better results.

Huele et al. (2000) point out that the score equation uR = 0 can be solved by
repeatedly fitting a gamma generalized linear model with responses di/(1−hii), link
g() and prior weights 1−hii. The di and the hii are updated at each iteration from
the updated γ by fitting a normal linear regression to the reponses yi. This is similar
to the strategy of LN98 except that LN98 do not specify the prior weights 1− hii.
Alternatively one could use responses di +hiiσ

2
i and prior weights unity, with again

di and hii updated at each iteration as in Huele (1998) and Huele & Engel (1998).
Both strategies have the REML estimates for γ as a stationary value. On the other
hand, neither generalized linear model gives correct standard errors for γ (the
unweighted model being worse than the weighted in this respect), although these
may be computed from IR at convergence of the iteration. Neither of these iterative
strategies — alternating between a normal generalized model for yi and a gamma
generalized linear model for di — can be guaranteed to converge, although either
could be modified to correct this using Levenberg-Marquardt damping as in (4)
or otherwise. In his implementation, Huele (1998) iterates the gamma generalized
linear model to convergence for each value of di and hii. This has the effect, rather
than of updating di and hii at each iteration, of introducing an extra inner iteration
for each fixed value of di and hii. This inner iteration is unnecessary and introduces
convergence problems as Huele (1998) reports on page 30. The gamma step is
better implemented as a one-step generalized linear model fit initialized at γ = γk.
When correctly implemented, and modified to ensure convergence, the alternating
double generalized linear model strategy with a one-step gamma step is equivalent
to the modified REML scoring iteration (4) with A = ZT∗V1Z

∗ (for the weighted
gamma strategy) or A = ZT∗Z∗ (for the unweighted gamma strategy).

5 Comparison with Other Methods

The REML idea of eliminating the mean parameters from the likelihood by consid-
ering the marginal distribution of zero-mean contrasts of the responses is strictly
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applicable only to normal linear models. There have been many attempts to extend
the REML idea to more general models. Some of these methods are equivalent to
REML for the heteroscedastic linear model considered in this paper, for example
those of Cox & Reid (1987), McCullagh & Tibshirani (1990) and Smyth & Verbyla
(1996). Each of these papers describe estimation principles which reduce to REML
in the normal linear case, but none of them give detailed guidance as to how to
organize the computational and inference procedures for specific models.

Several authors have developed special-purpose approximate REML methods
for dispersion modelling in generalized linear models. Letting µi denote the mean
and σ2

i the dispersion for the ith observation, link-linear models are assumed for
both the means

f(µi) = xT
i β, (5)

where f() is a known monotonic differentiable function, and the dispersions

g(σ2
i ) = zT

i γ. (6)

This is a generalization of the heteroscedastic regression model considered in this
paper. In many cases it is possible to estimate β and γ simultaneously by alter-
nating between two generalized linear models, one with the original observations as
reponses in which β is estimated with γ fixed and one with the unit deviances as
responses in which γ is estimated with β fixed. We refer to such cases as double
generalized linear models. Maximum likelihood estimation for double generalized
linear models was introduced by Smyth (1989). Approximate inference using ex-
tended quasi-likelihood (EQL) was introduced by Nelder & Pregibon (1987) and
Nelder & Lee (1991). Approximate REML methods for double generalized linear
models were proposed by Smyth & Verbyla (1996), LN98 and SV99. Nelder & Lee
(1992) also used a simple degree of freedom adjustment when using EQL with single
samples.

LN98 suggest estimating γ by minimising1

n∑
i=1

di

(1− hii)σ2
i

+ log σ2
i (7)

with the idea that this leads to estimates similar to the REML estimates. They
suggest a specific algorithm, which is to repeatedly fit a gamma regression to re-
sponses di/(1 − hii). This is motivated by the fact that di/(1 − hii) is unbiased
in the normal linear case for σ2

i . This algorithm is similar to one of the REML
algorithms described in the previous section except that LN98 do not specify the
use of prior weights 1 − hii. The LN98 algorithm therefore does not reduce to
REML in the normal linear case and fails to have one of the key REML character-
istics that observations with large leverage in the mean model are downweighted.
The LN98 algorithm actually does not mininize the objective function (7), in part
because the derivatives of 1/(1 − hii) have been neglected. Neither the algorithm
nor the objective function are equivalent to REML in the normal linear case. Even

1LN98 contains a misprint “maximize” in place of “minimize”.

7



though their published algorithm is not equivalent to REML, LN98 and Nelder &
Lee (1998) do in fact present correct REML estimates in their data examples. A
personal communication from Nelder (1999) to Verbyla confirms that they have in
fact implemented the gamma regression with prior weights 1− hii as suggested in-
dependently by Huele et al. (2000). In this paper, for the purposes of comparison,
the “LN98 algorithm” will refer to the published algorithm of LN98 which does
not have prior weights rather than to the implemented algorithm while the same
algorithm with prior weights 1 − hii will be referred to as the weighted algorithm
of Huele et al. (2000).

SV99 suggest estimating γ by gamma regression of di +hiiσ
2
i on Z, a procedure

which leads to correct REML estimators. They go on to modify the prior weights in
order to improve the estimation of the standard errors. The modified prior weights
have in general a complicated form but reduce to (1−hii)

2 for normal linear models.
Since REML would arise from unit prior weights it is apparent that the final SV99
algorithm is not equivalent to REML either.

We have had problems with making the LN98 algorithm converge on some data
sets. Since the algorithm does not actually minimize the objective function (7) it is
not possible to include a line search or Levenberg-Marquardt damping as in Section
4 to secure convergence. The same problem exists also for the SV99 algorithm.
Since it is not easy to characterise what objective function is being maximized by
the algorithms, it is not possible to modify the iteration step to ensure an increase of
that objective function at each iteration. In our implementations of the LN98 and
SV99 algorithms, we have stopped the iteration when the REML likelihood stops
increasing. The resulting numerical estimators however are not exactly REML
and it is very difficult to characterize their exact properties. Another problem is
that LN98 appear to iterate the gamma generalized model to convergence between
updates of di and hii. This inner iteration is unnecessary for reasons described
earlier in this paper and may be a cause for the convergence problems reported in
Nelder & Lee (1998).

A very general paper on variance modelling is Davidian & Carroll (1987) in
which mean-variance models are considered without explicit specification of the
response distribution. In our notation they suggest estimating γ by minimizing

n∑
i=1

{di − (1− hii)σ
2
i }2

(1− hii)2σ4
i

. (8)

This is related to the idea of approximating V with V2 as above. However this
approach treats the di as approximately normal and symmetric whereas their actual
distribution is highly skew. It is therefore likely to be less efficient that any of the
other methods considered here. Davidian & Carroll (1987) do not give a specific
algorithm by which the minimization of (8) might be achieved.
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6 Asymptotic Variances and Efficiences

The estimating equations for the REML, LN98 and SV99 estimators can be written
in the form

u = ZT Wd(d− σ∗2) (9)

where σ∗2 = {(1 − hii)σ
2
i } and Wd = diag{wdi/[2ġ(σ2

i )σ
4
i ]} and where the wdi

are functions of the σ2
i , X and Z but not β. If wdi = 1 then u is the REML

score vector and the solution of u = 0 is the REML estimator of γ. The LN98
estimator correponds to wdi = 1/(1− hii) while the SV99 estimator corresponds to
wdi = (1− hii)

2.
Under standard regularity conditions the asymptotic variance of the estimator

γ̃ defined by (9) is given by the robust sandwich estimator

var γ̃ ≈
[
E

∂u

∂γT

]−1

varu

[
E

∂uT

∂γ

]−1

(10)

This expression is based on a first order Taylor series expansion of the estimat-
ing equation (9) at γ̃ about the true value of γ (Huber, 1967, Liang & Zeger,
1986). When wdi = 1 the variance (10) reduces to (varu)−1 = I−1

R which is the
usual inverse REML information matrix. Since d has covariance matrix V it is
straightforward to compute that

E
∂u

∂γT
=

1

2
ZT diag

{
wdi

ġ(σ2
i )σ

2
i

}
V diag

{
1

ġ(σ2
i )σ

2
i

}
Z

and

varu =
1

2
ZT diag

{
wdi

ġ(σ2
i )σ

2
i

}
V diag

{
wdi

ġ(σ2
i )σ

2
i

}
Z

The variance (10) is minimized with respect to wd by the REML values wdi = 1,
because the inverse REML information matrix provides the lower variance bound for
unbiased estimators based on the fitted residuals and their distribution. Numerical
experiments show that neither of the LN98 or SV99 estimators is uniformly superior
to the other, depending on the specific values of X, Z and γ, and that both are
usually not far from the REML estimator. The LN98 estimator is often more
efficient than the SV99 estimator. However the SV99 estimator is preferable when
there are one or more highly leveraged observations with large values of hii.

6.1 Multiple Regression

It is instructive to consider the case of ordinary multiple regression in which the
variance is actually constant. The yi are assumed normal with mean xT

i β and
constant variance σ2. The maximum likelihood estimator of σ2 is

σ̂2 =
1

n

n∑
i=1

di =
1

n

n∑
i=1

(yi − ŷi)
2
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where µ̂i = xT
i β̂ while the REML estimator is the well known sample variance

s2 =
1

n− p

n∑
i=1

di =
1

n− p

n∑
i=1

(yi − ŷi)
2.

The LN98 estimator for σ2 is

1

n

n∑
i=1

di/(1− hii)

while the SV99 estimator is

1∑n
i=1(1− hii)3

n∑
i=1

(1− hii)
2di.

It is easily seen that neither LN98 nor SV99 give the REML estimator, although
the differences are often not great in practice. The LN98 method up-weights resid-
uals with high leverages while SV99 heavily down-weights them. The Davidian &
Carroll (1987) estimator is equivalent to LN98 in this case. All of the REML-type
estimators are unbiased for σ2.

The REML information for σ2 is

IR =
1

2σ4
1T V 1 =

n− p

2σ4

If one uses the standard errors for γ from the gamma generalized linear model in
the LN98 method then the information for γ is estimated to be the same as that
for ML with known means, namely n/(2σ4). However the variance of the LN98
estimator is actually

2σ4

n2

n∑
i=1

n∑
j=1

1

(1− hii)(1− hjj)
Vij =

2σ4

n

1 +
1

n

n∑
i=1

∑
j 6=i

h2
ij

(1− hii)(1− hjj)


where the Vij are the elements of V . The SV99 method estimates the information
matrix to be

1

2σ4
1T V21 =

∑n
i=1(1− hii)

2

2σ4

whereas the variance of the SV99 estimator is actually

2σ4

{∑n
i=1(1− hii)3}2

n∑
i=1

n∑
j=1

(1− hii)
2(1− hjj)

2Vij

=
2σ4∑n

i=1(1− hii)3

1 +
1∑n

i=1(1− hii)3

n∑
i=1

∑
j 6=i

h2
ij(1− hii)

2(1− hjj)
2


Variances for the LN98 and SV99 estimators for two example linear regressions

(with n = 5 and p = 2) are given in Table 1. The variances are given relative to the
lower variance bound achieved by the REML estimator. In the first example none
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Table 1: True and estimated variances for the LN98 and SV99 estimators relative
to REML for estimating σ2 from two linear regressions with n = 5 and p = 2. The
variances are divided by 2σ4/(n− p).

True Variance Estimated Variance
x LN98 SV99 LN98 SV99

1 1 3 5 5 1.016 1.105 0.6 1.622
1 2 3 4 20 1.078 1.005 0.6 1.345

of the leverages hii are very extreme and LN98 is close to fully efficient while SV99
is not. In the second example one of the leverages hii is much larger than the others
and SV99 is close to fully efficient while LN98 is not. In general SV99 becomes fully
efficient as max hii → 1, meaning that one of the observations is associated with
a extreme value for x. Both LN98 and SV99 estimators become fully efficient as
max hii → 0, in which case the estimated mean model converges to the true model,
or as the hii become equal, corresponding to a balanced design. The REML and
SV99 estimators remain defined even if hii = 1 for some i while the LN98 do not.

Also given in Table 1 are the nominal variances for the estimators provided by
the gamma generalize linear model fit, again relative to the variance of the REML
estimator. The LN98 method consistently underestimates the true sampling vari-
ance because it uses the ML information bound. The SV99 method over-estimates
the sampling variability in each of these examples.

7 Approximating the Information Matrix

Several authors have suggested approximating the matrix V in the computation of
`R by the diagonal matrix V2 which shares the same diagonal elements. Numerical
experiments show that the approximation ZT∗V2Z

∗ may be greater or lesser than
ZT∗V Z∗ depending on the values for X, Z and γ. This can be understood through
the following reasoning. Both V and V2 have positive eigenvalues. Since the sum of
the eigenvalues is equal to sum of the diagonal elements, the eigenvalues of V and
V2 have the same sum. Since of the sum of the squared eigenvalues is the sum of
all the squared elements of the matrix, the squared eigenvalues of V have a greater
sum than those of V2. Since the eigenvalues of V have the same mean but a greater
squared sum it follows that they are more varied that those of V2 and in particular
the largest eigenvalue of V is likely to be greater than that of V2. We can write

V = diag(1− 2hii) + H2

where H2 is the matrix with elements h2
ij. It is shown by Smyth (2002) that

the eigenvectors of H2 lie in the span of the columns of X and the componentwise
squares and products of these columns. Therefore the eigenvectors of V with largest
eigenvalues are likely to be highly collinear with the columns of X or with their
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Table 2: Estimates of γ for the Welding-Strength Data.

REML LN98 SV99
Intercept -3.15886 -3.15891 -3.15889

C -2.73543 -2.73544 -2.73528
H -0.08589 -0.08602 -0.08582
I 3.33239 3.33259 3.33236

squares and products. We can conclude that ZT∗V2Z
∗ is likely to under-estimate

ZT∗V Z∗ when the columns of Z∗ lie in the span of the columns of X or their squares
and products. On the other hand, if the columns of Z∗ are uncorrelated with the
columns of X or its squares and products then ZT∗V Z∗ = ZT∗diag(1 − 2hii)Z

∗

which is uniformly smaller than ZT∗V2Z
∗. Hence using the diagonal V2 in place

of V will over-estimate the standard errors when the columns of Z are similar to
those of X and will under-estimate them when Z is unrelated to X or to squares
and products of its columns.

An alternative approximation is ZT∗V1Z
∗. This approximation has the virtue

of giving exactly the correct result when Z∗ = 1, i.e., when the variance is actually
constant, a fact which follows from 1T V 1 = 1T V11 = n − p. The approximation
using V1 gives consistently smaller standard errors than with V2. The worst case
for this approximation is when Z∗ is unrelated to X. In that case V1 has 1− hii on
the diagonal whereas 1−2hii would give the correct result. Hence in the worst case
the approximation using V1 is halfway between the REML and the ML information
matrices. This worst case is unlikely to arise in practice though because both X and
Z will generally include an intercept and therefore will be at least partially collinear.
In practice the approximation based on V1 is often better than the approximation
based on V2.

LN98 do not state how standard errors for the γ̂ are computed. Using standard
errors output from the gamma generalized linear model used in their method would
correspond to using the Fisher information Z∗T Z∗ in place of the REML information
Z∗T V Z∗. The unweighted gamma regression used by Huele & Engel (1998) would
give the same result. These standard errors would be under-estimated by a factor
of about {(n− p)/n}1/2. LN98 and Nelder & Lee (1998) appear to have recognized
this problem and the standard errors given in their numerical examples appear to
be based on the approximate information matrix Z∗T V1Z

∗. These are the same
as would be given by the weighted gamma regression used by Huele et al. (2000).
The SV99 algorithm approximates the REML information matrix by Z∗T V2Z

∗ and
over-estimates the standard errors in most cases.
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Table 3: Estimated covariance matrices for γ̂ for the Welding-Strength Data. The
REML estimate is the inverse of the REML information matrix `R. The ML es-
timate is the inverse of the Fisher information matrix 1

2
Z∗T Z∗. The other two

estimates are the inverses of Z∗T V1Z
∗ and Z∗T V2Z

∗ respectively.

REML covariance matrix.
Intercept C H I

Intercept 0.691 -0.351 -0.357 -0.340
C -0.351 0.676 0.174 -0.075
H -0.357 0.174 0.697 -0.082
I -0.340 -0.075 -0.082 0.681

ML covariance matrix.
Intercept C H I

Intercept 0.50 -0.25 -0.25 -0.25
C -0.25 0.50 0.00 0.00
H -0.25 0.00 0.50 0.00
I -0.25 0.00 0.00 0.50

Approximation based on V1.
Intercept C H I

Intercept 0.670 -0.335 -0.335 -0.335
C -0.335 0.657 0.150 -0.068
H -0.335 0.150 0.657 -0.069
I -0.335 -0.068 -0.069 0.657

Approximation based on V2.
Intercept C H I

Intercept 0.899 -0.450 -0.450 -0.450
C -0.450 0.927 0.414 -0.220
H -0.450 0.414 0.927 -0.222
I -0.450 -0.220 -0.222 0.927
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8 Example: Welding-Strength Data

The data give the results of an off-line screening experiment for factors affecting
welding quality conducted by the National Railway Corporation of Japan (Taguchi
& Wu, 1980). The response variable is the observed tensile strength of the weld,
one of several quality characteristics measured. There are nine two-level factors [A–
I, following Bergman & Hynén (1997)] in an unreplicated experiment of 16 runs.
The data have been considered previously by Box & Meyer (1986a), Box & Meyer
(1986b), Bergman & Hynén (1997), Nelder & Lee (1998) and Huele & Engel (1998).
We consider the factors B and C for the mean and factors C, H, I for the variance
as found to be important by Bergman & Hynén (1997) using a graphical method
of analysis. We consider a log-linear model for the variance following Lee & Nelder
(1998) and Huele & Engel (1998). The model is

µ = β0 + βBb + βCc

for the mean and
log σ2 = γ0 + γCc + γHh + γIi

for the variance. Estimates were computed using the (0, 1) factor coding of Nelder
& Lee (1998) and Huele & Engel (1998). Nelder & Lee (1998) report divergence
for this model but we were able to obtain convergence using a single-step gamma
fit at each iteration. In this example there is considerable collinearity between the
design matrices X and Z. The estimated values for γ returned by REML and by
the LN98 and SV99 algorithms agree to 3 decimal places (Table 2) but there are
noticeable differences in the estimated covariance matrices. Table 3 gives estimated
covariance matrices for γ̂ and shows that the approximation based on V1 is in this
case preferable to that based on V2. The Cramer-Rao lower bound considerably
underestimates the variance of the REML estimator in this case. The weighted
strategy of Huele et al. (2000) gives reasonably accurate standard errors based on
V1 in this case while those of SV99 are based on V2 and are over-estimated and
those of LN98 are based on the Cramer-Rao lower bound and are under-estimated.

9 Conclusions

Ideally the heteroscedastic model should be estimated using exact REML meth-
ods and Smyth (2002) describes how this can be done efficiently. However if it
is desired to estimate the model using existing generalized linear model software,
either in order to avoid the need for special purpose programming or in order to use
the conceptual framework of double generalized linear models, then we recommend
using responses di/(1− hii) and prior weights 1− hii in the dispersion model. This
is a compromise between the algorithms of LN98 and SV99. Unlike the LN98 and
SV99 algorithms, it returns the correct REML estimators. It does not in general
return correct standard errors for likelihood values for γ without further calcula-
tion. However the standard error is correct in the simplest case when the variance is
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actually constant and the discussion of Section 7 suggests that the standard errors
may often be approximately correct in other cases as well. Neither of the LN98 or
SV99 algorithms can be recommended when the true REML estimators are just as
easily obtained. The LN98 method is somewhat inefficient when there are highly
leveraged observations in the mean model and lacks the robustness properties stud-
ied by Verbyla (1993). The SV99 appears to preserve the robustness properties but
is even less efficient than LN98 for a wide range of models. All algorithms are non-
linear estimation procedures and should ideally include step-length modifications
to ensure algorithmic convergence.
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