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Abstract

Background correction is an important pre-processing step for microarray data

which attempts to adjust the data for the ambient intensity surrounding each fea-

ture. The normexp method models the observed pixel intensities as the sum of two

random variables, one normally distributed and the other exponentially distributed,

representing background noise and signal respectively. Using a saddlepoint approx-

imation, Ritchie et al. (2007) found normexp to be the best background correction

method for two-color microarray data. This article develops the normexp method

further by improving the estimation of the parameters. A complete mathematical

development is given of the normexp model and the associated saddlepoint approx-

imation. Some subtle numerical programming issues are solved which caused the

original normexp method to fail occasionally when applied to unusual data sets.

A practical and reliable algorithm is developed for exact maximum likelihood esti-

mation (MLE ) using high quality optimisation software and using the saddlepoint

estimates as starting values. MLE is shown to outperform heuristic estimators pro-
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posed by other authors, both in terms of estimation accuracy and in terms of per-

formance on real data. The saddlepoint approximation is an adequate replacement

in most practical situations. The performance of normexp for assessing differential

expression is improved by adding a small offset to the corrected intensities.
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1 Introduction

Fluorescence intensities measured by microarrays are subject to a range of different

sources of noise, both between and within arrays. Sources leading to within-array

variation include non-specific hybridisation and debris left after the wash stage, while

between-array variation includes differing amounts of dye, scanner settings and RNA

quality. Background correction aims to adjust for these effects by taking account of

ambient fluorescence in the neighbourhood of each microarray feature.

Ritchie et al. (2007) compared a range of background correction methods for two-

colour microarrays. A method normexp was introduced which models the observed

intensities as the sum of exponentially distributed signals and normally distributed

background values. The corrected intensities are obtained as the conditional expec-

tations of the signals given the observations. The normexp method is an adaptation

of the background correction method proposed by Irizarry et al. (2003) for Affymetrix

single-channel arrays, as the first step of the popular RMA algorithm for pre-processing

Affymetrix expression data. Ritchie et al. (2007) showed that normexp, followed by a

started-log transformation, gave the lowest false discovery rate of any commonly avail-

able background correction method for two-color microarrays.

The convolution model underlying the normexp method involves three unknown

parameters, all of which must be estimated before the method can be applied. In the

two-color context, the parameters must be estimated for each channel on each array,

by fitting the convolution model to the observed intensities for that channel. Ritchie et

al. (2007) suggested an approximate likelihood method for estimating the parameters,

based on a saddlepoint approximation, but did not give mathematical details.

This article develops the normexp method further by improving the estimation of

the parameters. Firstly, a complete mathematical development is given of the normexp

model and the associated saddlepoint approximation. Secondly, some subtle numerical

programming issues are solved which caused the original normexp method to fail oc-
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casionally when applied to unusual data sets. Thirdly, we show that exact maximum

likelihood estimation (MLE ) of the parameters can be made practical and reliable us-

ing high quality optimisation software and using the saddlepoint estimates as starting

values. Fourthly, we compare exact and approximate MLE with estimators proposed

by other authors.

Maximum likelihood estimation has previously proved difficult because of numerical

sensitivity of the likelihood function (Irizarry et al. 2003, Bolstad 2004, McGee & Chen

2006). Instead of MLE, the RMA algorithm, implemented in the affy software package

for R (Gautier et al. 2004), uses simple heuristic estimators obtained by smoothing

the histogram of observed intensities and partitioning the distribution about its mode

(Bolstad 2004, Irizarry et al. 2003). McGee & Chen (2006) observed that the RMA

estimators are highly biased, and proposed two new estimators. These methods are

based on the RMA kernel smoothing approach, but partition the distribution about its

mean (the RMA-mean method) or about 75th percentile (the RMA-75 method) and

then apply a one-step correction. The RMA-mean and RMA-75 estimators are far less

biased than those of RMA but apparently do not improve the performance of the RMA

algorithm on real data (McGee & Chen 2006).

The saddlepoint approximation avoids the sensitivity of the likelihood function by

providing a closed-form expression for the probability density on the log-scale, ensuring

good relative accuracy. However the saddlepoint itself must first be found for each data

value. This article provides a globally convergent iterative scheme which locates the

saddlepoint to full accuracy in floating point arithmetic in all cases.

The accuracy of the different estimators are compared in a simulation study. The

estimators are also compared using the extensive battery of calibration data sets assem-

bled by Ritchie et al. (2007). This allows the estimators to be compared according to

their ability to estimate fold changes and to detect differential expression on real data.

As in Ritchie et al. (2007), the assumed context is that of a small microarray experiment

in which popular differential expression methods are to be applied. MLE is shown to
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have markedly better performance than the heuristic estimators.

Section 2 describes the normexp convolution model, presents the MLE and saddle

procedures, and addresses some challenges in their implementation. Section 3 briefly

describes the three test data sets with known levels of differential expression. Section

4 compares the four estimation schemes both by simulation and by performance on the

test datasets.

2 Correction methods

2.1 The normal-exponential convolution model

Image analysis software for two-colour microarrays produces red foreground and back-

ground intensities Rf and Rb and green foreground and background intensities Gf and

Gb for each spot on each array. Our aim is to appropriately adjust the foreground

intensities Rf and Gf for the ambient intensities represented by Rb and Gb.

The normexp model for the red channel assumes Rf = Rb + B + S where S is the

true expression intensity signal and B is the residual background not captured by Rb.

The model for the green channel is similar. The signal S is assumed exponentially

distributed with mean α while B is normally distributed with mean µ and variance σ2.

The parameters µ, σ2 and α are assumed different for each channel on each array. All

variables are assumed independent.

Write X = Rf −Rb for the background-subtracted observed intensity. The normexp

model becomes

X = B + S (2.1)

The joint density of B and S is just the product of densities

fB,S(b, s;µ, σ, α) =
1
α

exp(−s/α)φ(b;µ, σ2) (2.2)

where s > 0 and φ() is the Gaussian density function. A simple transformation gives
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the joint density of X and S as

fX,S(x, s;µ, σ, α) =
1
α

exp
(
σ2

2α2
− x− µ

α

)
φ(s;µS.X , σ

2)

where µS.X = x− µ− σ2/α. Integrating over s gives the marginal density of X

fX(x;µ, σ, α) =
1
α

exp
(
σ2

2α2
− x− µ

α

)
[1− Φ(0;µS.X , σ

2)] (2.3)

where Φ() is the Gaussian distribution function. Dividing the joint by the marginal

gives the conditional density of S given X as

fS|X(s|x;µ, σ, α) =
φ(s;µS.X , σ

2)
1− Φ(0;µS.X , σ2)

for s > 0, which is a truncated Gaussian distribution. Our estimate of the signal given

the observed intensities is the conditional expectation

E(S|X = x) = µS.X +
σ2φ(0;µS.X , σ

2)
1− Φ(0;µS.X , σ2)

(2.4)

2.2 Saddle-point approximation

Maximum likelihood estimation requires the marginal density (2.3) which, although

seemingly simple, turns out to be difficult to compute with full relative accuracy in

floating point arithmetic, due to subtractive cancellation affecting both factors in the

expression. As an alternative, the saddlepoint approximation, or tilted Edgeworth ex-

pansion, provides a means of approximating the density of any random variable from

its cumulant generating function (Barndorff-Nielsen & Cox 1981, pp. 104). The ap-

proximation is attractive because it typically remains accurate far into the tails of the

distribution.

The cumulant generating function of X is immediately available as the sum of those
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for B and S,

KX(θ) = KB(θ) +KS(θ) = µθ + σ2θ2/2− log(1− αθ)

where θ < 1/α. The definition of the cumulant generating function implies that g(x; θ) =

fX(x) exp[yθ −KX(θ)] integrates to unity for all θ. Here we suppress the dependence

of fX on µ, σ and α for notational simplicity. The density g(x; θ) defines a linear

exponential family with canonical parameter θ and with rth cumulant κr = K
(r)
X (θ).

The second-order Edgeworth expansion for g (Barndorff-Nielsen & Cox 1981, pp.

106) is

log g̃(x; θ) = −1
2

log(2πκ2) +
κ4

8κ2
2

− 5κ2
3

24κ3
2

yielding the approximation for fX

log f̃X(x; θ, µ, σ, α) = log g̃(x; θ)− yθ +KX(θ).

The key feature which makes the saddlepoint approximation so effective is the ability

to choose θ to make the Edgeworth expansion as accurate as possible for each x. This

is done by choosing θ so that x is the mean of the distribution, i.e., θ is chosen to solve

the saddlepoint equation

K ′
X(θ) = µ+ σ2θ +

α

1− αθ
= x (2.5)

for θ < 1/α. Although this equation has a simple analytic solution, computing the

solution is subject to catastrophic subtractive cancellation for certain values of σ and

α. Details of how we avert this numerical issue are provided in Section A of the supple-

mentary material (http://www.biostatistics.oxfordjournals.org).
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2.3 Optimisation

Given a set of observed intensities xi, i = 1, . . . , n, the unknown parameters µ, σ and α

must be estimated before the correction formula (2.4) can be applied. Starting values

are obtained as follows. The initial estimate µ̂0 of µ is the 5% quantile of the xi. The

initial variance σ̂2
0 is the mean of (xi − µ̂0)2 for xi < µ̂0. The initial α̂0 = x̄− µ̂0.

Next the saddlepoint approximation to the likelihood is maximised using the Nelder-

Mead simplex algorithm (Nelder & Mead 1965). Nelder-Mead is slower than gradient-

based optimisation algorithms, but has the advantage of robust convergence from a very

wide range of starting values.

Finally, using the saddlepoint estimates as starting values, the exact likelihood is

maximised using the nlminb function of R, which performs unconstrained minimisation

using PORT routines (Gay 1981, Gay 1983, Gay 1990). First and second derivatives

of fX with respect to µ, logα and log σ2 are supplied. Optimising the likelihood with

respect to logα and log σ2, rather than α and σ2, avoids parameter constraints and

improves convergence.

The algorithm is implemented in the limma software package for R (Smyth 2005).

Saddlepoint parameter estimation takes about one second per channel with 20,000 probe

arrays on a 2GHz Windows PC. Exact MLE takes about 50% longer. Time taken is

roughly linear with the number of probes.

2.4 Transformation and offset

The normexp background correction (2.4) is performed for each channel on each array,

yielding adjusted strictly positive red and green intensities R and G for each spot on

each array. These are then converted to log-ratios, M = log2(R/G), and log-averages,

A = 1
2 log2(RG) (Yang et al. 2001).

It also proves useful to offset the intensities by a small positive value k, giving offset

log-ratios M = log2[(R+ k)/(G+ k)]. This simple transformation shifts the intensities
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away from zero and serves to stabilise the variance of the log-ratios at low intensities

(Rocke & Durbin 2003, Ritchie et al. 2007). The value k = 50 was chosen for this study

on the basis of our previous experience with cDNA microarray experiments (Ritchie et

al. 2007).

3 Test Data

3.1 Spike-in experiment

This article uses the same three calibration data sets as Ritchie et al. (2007). The

first uses Lucidea Universal ScoreCard controls (Amersham Biosciences) to assess bias.

Twelve copies of the LUS control probe set were printed in duplicate on 9 cDNA mi-

croarrays, along with a 13K clone library. Only the control probes are analyzed here.

Prior to labelling, test and reference control RNA were spiked into RNA samples to

produce known fold changes (Supplementary Table 1). All 8 background correction

methods (RMA, RMA-75, saddle and MLE, with and without the offset) were applied.

The resulting log-ratios were normalised and duplicate spots were combined to give an

estimate of the log2-fold change as described by Ritchie et al. (2007).

3.2 Mixture experiment

The second data set is from Holloway et al. (2006). Six RNA mixtures consisting of

mRNA from MCF7 and Jurkat cell-lines in known relative concentrations (100%:0%,

94%:6%, 88%:12%, 76%:24%, 50%:50% and 0%:100%) were compared to pure Jurkat

reference mRNA on 12 cDNA microarrays printed with a Human 10.5K clone set. Dye-

swap pairs were performed for each of the 6 mixtures. All 8 background correction

methods were applied and the data were normalised using print-tip loess (Yang et

al. 2001). Probe-wise non-linear regression equations were fitted to the normalised

log-ratios (Holloway et al. 2006). This produced for each probe a reliable consensus

estimate of the MCF7 to Jurkat fold change and a standard deviation which estimates
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the between-array measurement error.

3.3 Quality control study

The final data set is from Ritchie et al. (2006), and comprises 111 replicate arrays printed

with the same 10.5k clone set as in the mixture study and hybridised with MCF7 (Cy3)

and Jurkat mRNA (Cy5). Spot image data was morph background corrected and print-

tip loess normalised. A large proportion of the genes are expected to be differentially

expressed (DE) between the two samples, and this provided an independent source of

truth for a false discovery rate comparison based on the Mixture data.

4 Results

4.1 Reliability

The estimation scheme outlined in Section 2.3 has proved to be extremely reliable. It

has converged successfully for all datasets the authors have encountered so far, including

thousands of simulated and real microarrays. This contrasts with earlier experiences

reported by McGee & Chen (2006), who used Newton’s method to find maximum like-

lihood estimates numerically. They attempted to maximise the likelihood of samples

with µ = 30, σ = 10 and α = 100. Their optimisation algorithm converged in only 15%

of cases, even when initial estimates were equal to the true parameter values.

RMA estimation also returned useable values for all datasets. The RMA-mean and

RMA-75 methods each failed for some simulated data sets, the former slightly more

often that the latter. Since the two are otherwise similar in performance, results will

be presented here only for RMA-75. RMA-75 returned NaNs for 32% of simulated data

sets with σ = 5 and α = 104 and for 0.3% of data sets with σ = 20 and α = 104.
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4.2 Estimation accuracy

Data was simulated for all combinations of µ ∈ {30, 100, 500}, σ ∈ {5, 20, 100} and

α ∈ {102, 103, 104}. These values represent a very wide range of scenarios in terms of

the distribution of foreground values typically observed in microarray data. For each

combination of parameter values, 1000 replicate samples of 20,000 observed intensities

X were generated. Results are presented only for µ = 100 as the other results are almost

identical.

The MLE bias and standard deviation were the smallest followed closely by those

of saddle (Tables 1, 2 and 3). RMA-75 is much more biased and RMA is by far the

worst. Parameter estimates for individual datasets for the representative parameter

values σ = 20 and α = 1000 are plotted in Figure 1. It is telling that the estimates

from RMA were so biased that they fall outside the range of this plot. MLE is the most

precise with almost no bias. Saddle is equally precise but with some bias, tending to

underestimate σ. RMA-75 and RMA on the other hand overestimate σ.

Another way to view accuracy is in terms of ability to return the correct signal

values. Figure 2 shows the bias with which E(S|X) estimates S on the log2 scale, for

µ = 0 σ = 20 and α = 1000. Here RMA-75 and especially RMA yield far more biased

estimates of the signal than MLE or saddle, which are relatively accurate. Although

MLE and saddle do tend to overestimate the true signal at lower intensities, this is

indistinguishable from the bias that arises from inserting the true parameter values into

E(S|X).

4.3 Implicit offsets

The normalised M and A-values for one array from the Mixture experiment are shown

in figure 3. This array has 100% Jurkat on both channels, so there is no true differential

expression.

Some fanning of M -values is apparent at low A-values in the MLE and saddle panels.
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This fanning is essentially eliminated in the corresponding offset panels, at the cost of

compressing the range of A-values. Compared with MLE, RMA-75 and especially RMA

show a somewhat compressed range of A and M -values even before the offset is applied.

Our interpretation is that these estimation schemes incorporate offsets implicitly, which

arise from the fact that they tend to overestimate the quantity µS.X . Adding an offset

to RMA is therefore in effect a double offset.

For this array, high offset and low M -value variability is desirable because the true

M -values are zero. For arrays with genuine differential expression, compression of the

M -values might appear as bias, and this is examined in Section 4.5.

4.4 Precision of expression values

We now examine the precision of the background corrected intensities, using results

from the Mixture experiment. The residual standard deviation for each probe, σ̂i, is a

measure of the precision with which the M -values returned by the microarrays follow

the pattern of the mixing proportions. Figure 4 shows the trend in variability for each

background method as a function of intensity. The vertical scale is log2-variance, so

each unit on the vertical axis corresponds to a 2-fold change in variance or a halving of

statistical information.

As expected, precision improves with intensity for all the background correction

methods prior to applying an offset. MLE and saddle have the best precision of the

four methods for most of the intensity range. RMA-75 is relatively poor at higher

intensities. After adding an offset, MLE and saddle have roughly constant variance

across the intensity range, whereas the offset seems overdone for RMA and RMA-75,

which now show a reversed trend in precision.

4.5 Bias of expression values

It is to be expected that higher precision, purchased by compressing the intensity range,

will also result in attenuated signal. This is confirmed by examining the MCF7-Jurkat
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log-fold changes estimated from the Mixture experiment. Supplementary figure 1 shows

boxplots of the log-fold changes arising from each method. The spread of fold changes

narrows when offsets are added, although the largest fold changes remain nearly as

great.

To confirm whether attenuated fold changes can be interpreted as bias, we turn to the

Spike experiment data. Supplementary figure 2 shows the M -values for a typical slide

for the non-DE calibration controls and for the DE D03Med ratio controls, theoretically

having 3-fold change down (− log2 3 = −1.58). All methods give log-ratios which are

slightly biased towards zero, and the bias increases when offsets are added. There

is surprisingly little difference between the four estimation algorithms, all leading to

broadly similar bias.

4.6 Assessing differential expression

We now assess the ability of the background corrected expression values to correctly

identify DE genes. Apart from the self-self hybridisations, the Mixture experiment

consists of 5 dye-swap pairs of arrays. We assessed differential expression between

MCF7 and Jurkat using each pair of arrays separately. The RNA mixtures vary from

100% to 50% MCF7, so the magnitude of the fold changes will vary from one pair of

the arrays to another, but the set of DE genes should be the same in each case.

Using only two arrays to find DE genes presents a challenging problem, because

there is only one degree of freedom available to estimate gene-wise standard devia-

tions. The level of difficulty further increases with the concentration of Jurkat in the

MCF7:Jurkat RNA mixture. The use of ordinary t-tests or other traditional univariate

statistics to assess differential expression would be disastrous (Smyth 2004). Instead

we use two of the most popular algorithms for microarray differential expression which

have the characteristic of ‘borrowing’ information between genes. These algorithms

have the ability to make statistical inferences with some confidence even for small

numbers of replicate arrays. Genes were ranked in terms of evidence for differential
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expression using SAM regularised t-statistics (Tusher et al. 2001) and using empirical

Bayes moderated t-statistics (Smyth 2004). The statistics were calculated using the

samr (http://www-stat.stanford.edu/∼tibs/SAM/) and limma (Smyth 2005) software

packages respectively.

To assess the success of the differential expression analyses, an independent deter-

mination of which genes are truly DE is required. The top 30% of genes, as ranked by

moderated t-statistic (Smyth 2004), from the Quality Control study were selected as

unambiguously DE and the bottom 40% as unambiguously non-DE. This gave 3098 DE

and 4130 non-DE genes. The remaining 30% of genes were treated as indeterminate

and are not used in the analysis.

Figure 5 shows the number of false discoveries for each method versus the number of

genes selected by ranking the genes using absolute t-statistics, from largest to smallest

for (a) limma and (b) SAM. The curves have been averaged over the 5 dye-swap pairs.

The limma curves show that adding an offset reduces the false discovery rate, with the

best performance achieved by MLE and saddle, followed by RMA-75 and then RMA.

For SAM, the advantage of MLE+offset and saddle+offset over the methods is even

more marked. SAM appears to penalise methods which do not stabilise the variance.

5 Discussion

In this article, we have shown that exact MLE gives the most accurate estimation of the

normexp parameters, and this accuracy translates into higher precision for the computed

log-ratios of expression. The saddlepoint approximation is a very close competitor. The

heuristic normexp estimators are markedly poorer in estimation accuracy. Furthermore,

RMA-mean and RMA-75 fails occasionally, and even frequently for some simulated

scenarios. However MLE and saddle converged successfully in all of our tests.

The performance of normexp for assessing differential expression on real data is

improved when combined with an offset, as a result of stabilising the variance as a
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function of intensity. MLE+offset and saddle+offset gave the lowest false discovery

rates. Although exact MLE does slightly better, the saddlepoint approximation could

be considered an adequate replacement in most practical situations.

Estimation accuracy did not however directly translate to practical performance in

all cases. RMA gives easily the most biased parameter estimates. Yet when we turned

to the real-data examples, RMA yielded higher precision and fewer false-positives than

RMA-75. Prior to offset, RMA is the best of all the methods when used with SAM

significance analysis. This can be understood in terms of noise-bias trade-off. It appears

that the biased RMA estimators have the fortuitous effect of introducing an implicit

offset into the corrected intensities, and this has a variance stabilising effect. This

partly explains why the RMA algorithm has been so successful for Affymetrix data.

RMA also tends to return roughly similar parameter estimates regardless of the data,

producing more consistent parameter estimates between arrays than the other methods.

We speculate that this consistency may also help its performance on real data.

Since our study was completed, Ding et al. (2008) developed a normexp-type back-

ground correction method for Illumina microarray data. They proposed a Markov chain

Monte Carlo (MCMC) simulation method to approximate the maximum likelihood pa-

rameter estimates. Their method is not directly applicable to non-Illumina data, be-

cause it requires Illumina negative controls. MCMC is far more computationally inten-

sive than our Newton-Raphson MLE, and returns approximate estimates which vary

stochastically from run to run.

Our algorithm is the first to reliably return exact maximum liklihood estimates for

the normexp model. Achieving this required careful attention to a number of numerical

analysis issues. In initial attempts, numerical issues including subtractive cancellation

prevented us from computing the likelihood for some data sets. Several ingredients

were required before reliable success was achieved including: 1) good initial estimates

provided by the saddle procedure, 2) optimising with respect to logα and log σ instead

of α and σ (to enforce α > 0 and σ > 0), and 3) optimising using both first and second
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derivatives. Note that the Nelder-Mead algorithm was used first with the saddlepoint

likelihood, then a pseudo-Newton-Raphson algorithm was used on the exact likelihood

once a focused parameter range was established. The Nelder-Mead algorithm could not

have been used directly on the exact likelihood because of the much wider range of

parameter values under which the likelihood would need to be evaluated. Nor could

Newton-Raphson have been applied to the saddlepoint approximation, because of the

lack of good starting values.

Although we have focused exclusively here on two-color microarrays, our algorithmic

development has obvious applications to other micoarray platforms as well.
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List of Figures

1 Box-plots of parameter estimates for the three best-performing methods.
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Figure 1: Box-plots of parameter estimates for the three best-performing methods. The
true values of the parameters are indicated by a dashed horizontal line. Estimates of
RMA were so far from those of other methods that they do not appear when plotted
on this scale (see tables 1, 2 and 3).
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Figure 2: Smoothed log2-ratio of the true to the estimated signal versus the true signal.
The black line show this relationship if the true parameter values are used instead of
estimates. The data used for this figure includes 100,000 observations simulated with
µ = 0, σ = 20 and α = 1000. Quantiles for the signal distribution are marked. The
curves were smoothed using LOWESS (Cleveland, 1979).
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Figure 3: MA-plots obtained using different background correction methods for a self-
self hybridisation from the Mixture experiment.
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σ α MLE saddle RMA−75 RMA
5 102 0.0079 (0.22) -0.25 (0.22) 1.7 (1.6) 12 (2.7)
20 102 0.0024 (0.47) 0.013 (0.50) 5.4 (2.3) 25 (2.6)
100 102 0.013 (1.6) 11.0 (1.5) 4.8 (11) 47 (9.0)
5 103 -0.023 (0.67) -0.37 (0.65) 4.2 (7.5) 44 (23)
20 103 -0.025 (1.4) -1.3 (1.4) 6.6 (11) 69 (24)
100 103 -0.098 (3.1) -3.4 (3.1) 26.0 (18) 170 (24)
5 104 0.022 (2.3) -0.36 (2.2) 32.0 (64) 380 (230)
20 104 0.20 (4.2) -1.3 (4.0) 32.0 (66) 390 (220)
100 104 0.069 (9.2) -6.5 (9.0) 41.0 (85) 520 (240)

Table 1: Bias and standard deviation (shown in brackets) in estimating µ for the four
estimation methods in 9 different scenarios. The true values of α and σ in each scenario
are shown in the first two columns, and µ = 100 for all scenarios. All values are given
to two significant figures.

σ α MLE saddle RMA−75 RMA
5 102 0.00059 (0.20) -0.40 (0.19) 1.5 (0.71) 7.0 (1.9)
20 102 -0.0069 (0.40) -0.46 (0.43) 5.6 (1.0) 15.0 (1.6)
100 102 0.003 (1.0) 7.3 (0.99) 25.0 (5.0) 45.0 (5.1)
5 103 -0.067 (0.62) -0.56 (0.56) 3.2 (4.7) 32.0 (19)
20 103 -0.11 (1.2) -1.9 (1.1) 6.0 (5.3) 44.0 (19)
100 103 -0.00048 (2.8) -5.9 (2.7) 27.0 (7.8) 100.0 (16)
5 104 -0.72 (2.4) -1.2 (2.1) ∞a ∞a 310.0 (190)
20 104 -0.40 (4.0) -2.5 (3.6) ∞b ∞b 300.0 (180)
100 104 -0.52 (8.5) -10.0 (7.8) 36.0 (46) 360.0 (190)

Table 2: Bias and standard deviation (shown in brackets) in estimating σ for the four
estimation methods in 9 different scenarios. The true values of α and σ in each scenario
are shown in the first two columns, and µ = 100 for all scenarios. All values are given
to two significant figures. ∞a and ∞b indicate, respectively, where 32.4% and 0.3% of
replicates yielded infinite estimates.
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σ α MLE saddle RMA−75 RMA
5 102 -0.00013 (0.75) 0.25 (0.75) -1.1 (1.5) -80 (0.31)
20 102 -0.013 (0.82) -0.023 (0.84) -2.5 (1.9) -79 (0.40)
100 102 -0.046 (1.6) -11.0 (1.5) 27.0 (8.1) -69 (4.4)
5 103 0.021 (6.8) 0.37 (6.8) -2.8 (10) -800 (2.9)
20 103 0.11 (6.8) 1.4 (6.8) -4.6 (12) -800 (2.9)
100 103 -0.16 (7.5) 3.2 (7.5) -15.0 (16) -790 (3.2)
5 104 0.50 (72) 1.0 (72) -28.0 (100) -8000 (28)
20 104 -3.2 (69) -1.6 (69) -29.0 (100) -8000 (28)
100 104 3.1 (71) 9.5 (71) -23.0 (110) -8000 (30)

Table 3: Bias and standard deviation (shown in brackets) in estimating α for the four
estimation methods in 9 different scenarios. The true values of α and σ in each scenario
are shown in the first two columns, and µ = 100 for all scenarios. All values are given
to two significant figures.

27


