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Summary

Daniels (JAP 1982) gave a saddlepoint approximation to the probabilities of
a general birth process. This paper gives an improved approximation which
is only slightly more complex than Daniels’ approximation and which has
considerably reduced relative error in most cases. The new approximation
has the characteristic that it is exact whenever the birth rates can be re-
ordered into a linear increasing sequence.
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1 Introduction

Daniels (1982) gave a saddlepoint approximation to the probabilities of a
general birth process. This paper gives an improved approximation which
is only slightly more complex than Daniels’ approximation and which has
considerably reduced relative error in most cases. The new approximation has
the characteristic that it is exact whenever the birth rates can be reordered
into a linear increasing sequence.
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A birth process is an example of a Markov chain and there is a large
and active literature on the numerical computation of transient probabilities
for Markov chains. Stewart (1994, Chapter 8) gives a detailed and readable
survey of the available methods and Stewart (1995) is a recent collection
of papers. Popular methods include matrix exponentiation by uniformiza-
tion (Grassman, 1977), matrix exponention by Krylov space methods (Sidje,
1998) and direct solving of the Chapman-Kolmogorov differential equations.
Sidje and Stewart (1999) compare a range of methods in a recent numerical
study. Podlich et al (1999a) discuss numerical computation of derivatives
of probabilities. Despite the existance of these numerical methods there is
still considerable interest in accurate analytic approximations. This is partly
because of the complexity of the numerical methods but also because it diffi-
cult to guarantee the accuracy for all probabilities in all cases. The numerical
methods are matrix orientated and generally return all probabilities starting
from n = 0 even if only one probability is required. Error bounds are usu-
ally dominated by the larger probabilities and very small probabilities may
not be computed to good relative accuracy. The saddlepoint approximation
solves these problems and also can be manipulated analytically, for example
differentiated with respect to unknown parameters.

The ordinary saddlepoint approximation is accurate for a wide range of
birth rates to two or more significant figures. This accuracy is satisfactory
for descriptive purposes, but greater accuracy is desirable for example when
using the probabilities for maximum likelihood fitting of parametric models.
See Podlich et al (1999b) for a recent application requiring accurate analytic
approximations for birth rate probabilities.

Daniels (1982) derived his approximation using a method from asymptotic
analysis known as the saddlepoint technique or the method of steepest descent
applied to the inversion integral of the Laplace transform of the probabili-
ties. Reid (1988) pointed out that the saddlepoint technique has a statistical
interpretation in terms of exponentially tilted densities. The distribution of
interest is imbedded in a linear exponential family and an Edgeworth expan-
sion is applied to the exponential family density at an optimal choice of the
canonical parameter. The ordinary saddlepoint approximation corresponds
to a single term Edgeworth expansion, i.e., to a normal approximation to the
exponential family density.

Several authors have investigated using a non-normal density in place of
the normal as the first term of the Edgeworth expansion. For example Em-
brechts et al (1985) and Jensen (1991, 1995) proposed the use of gamma
distributions. The motivation for using the gamma distribution was to more
accurately approximate distributions which are asymptotically gamma in the
extreme tail. McCullagh (1987, Chapter 5) gives general formulae for Edge-
worth type expansions with an arbitrary smooth density as the first term.

In this paper we note that the count distribution of a birth process follows
a negative binomial distribution when the birth rates are linear increasing.
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This allows us to derive the waiting time distribution for any birth rate
sequence which is a permutation of a linear increasing sequence. This dis-
tribution is then used as the leading term for the saddlepoint approximation
for a general birth rate process. The result is exact not only in the negative
binomial case, but also in the Poisson case (constant birth rates), binomial
case (linear decreasing rates) and any case when the birth rates can be re-
ordered in a linear sequence. Even when the birth rates are not evenly spaced,
the negative binomial based saddlepoint approximation is often considerably
more accurate than the usual saddlepoint approximation.

Although the saddlepoint method has been very successful in practice, it
is difficult to compute analytic error bounds for the approximations. For the
same reasons it is difficult to make a general analytic comparison between
the usual saddlepoint approximation and that based on the negative binomial
distribution. In this paper we instead demonstrate the superiority of the
new approximation empirically using the same examples as given by Daniels
(1982). One special case in which superiority can be proved analytically is
that in which the birth process being examined lies in a neighbourhood of
one of the exact cases referred to above. Such applications arise naturally for
example when using birth processes to extend standard regression models for
categorical data as in Faddy (1997a, b), Faddy and Bosch (1999) or Smyth
and Podlich (2000).

In Section 2 we derive a generalized form of the saddlepoint approxima-
tion for birth processes. Although not unexpected, the general approximation
with correction term that we give at the end of Section 2 appears to be new.
The approximation based on the negative binomial distribution is developed
in Section 3. Numerical comparisons with the standard saddlepoint approx-
imation are given in Section 4.

2 Saddlepoint Approximations

Consider a pure birth process with birth rates A;, ¢ = 0,1,.... Here \; is
the birth rate when ¢ individuals are present, and we assume no individuals
present at time zero. Let p,(t) be the probability mass function for the
number of births by time ¢, n =0,1,....

Let f,,(t) be the density function of the waiting time until the nth birth.
Daniels (1982) pointed out that

Daniels (1982) used the saddlepoint technique to invert the Laplace trans-
formation of p, (t). The same approximation can be derived by inverting the
moment generating function of f,41(¢),

n

M(s) = H >\¢>\i s

1=0
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Let f(t,0) be the exponential family density generated by f,11(t),

f(t, 6) = fn+1 (t) eXp{te - K<9)}

where K (0) = log M (#) is the cumulant generating function of f,41(¢). The
exponential family distribution has cumulants

kr(0) = K7 (0) r—l'z )\_9
=0

Let  be the value of  which solves x;() = t. We can write

a1 (t) = f(t,0) exp{K(0) — t0}.

The ordinary saddlepoint approximation consists of replacing f(t, é) by its
normal approximation, i.e.,

Fr1(t) = {2mr2(6)} /% exp{K (6) — 16}.

This approximation has high relative accuracy because the normal approx-
imation is used only at the mean of the approximated distribution. The
approximation for p,(t) is finally

Pu(t) = Faa(8)/An = {27k2(0)} /2 exp{H(t, A)}
with

n—1 n
H(t,A) = —t0+ > logA; — »_log(\; —0).
=0 1=0

Note that this final approximation can be used even for A\, = 0.

If the \; have bounded range then the Central Limit Theorem applies to
the waiting time f,,11(¢t) and hence also to f(t,0) and the relative error of
the saddlepoint approximation is O(n=1!),

pu(t) = pu(t) {1+ 0™}

A higher order approximation can be obtained by including adjustments for
the third and fourth cumulants of f(¢,6) (Daniels, 1982; McCullagh, 1987).
If the Central Limit Theorem applies then r,.(0)/k2(0)Y/? = O(n="/271),
r > 3, for any 6. The second and generally more accurate approximation is

where here and in the following k, = /{T(é). On taking logarithms we also
have

1Ky 5 K3

1
log py,(t) = —3 log{2mko} + H(t, A) + 82 943 +0(n~ ) (1)
2 2
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and this form of the expansion is usually slightly preferable because it in
principle preserves positivity of the density.

Although the use of the normal distribution as the leading term in the
saddlepoint approximation is usual, any reasonable approximation can in
principle be used for f(t,0). If f(t,0) follows a known distributional form
other than the normal in some limit then an improved approximation can
often be obtained by using the alternative distribution. We know for example
that f(t,0) converges to a gamma density as the range of the \; tends to zero.
Let g be an arbitrary density with mean ¢ and variance k3. An alternative
saddlepoint approximation is

Far1(t) = g(t) exp{K () — t6}.

Write the cumulants of g as k,.. If g(t) itself can be approximated to O(n~2)

using the second order saddlepoint approximation based on the normal dis-

tribution, then we obtain the generalized saddlepoint approximation
lhg—ky 5 K5 — K3

1 =1 H = - —2 2
og pn(t) = logg(t) + (t,/\)+8 P YR +0(n™7)  (2)

where again k, = k.(0).

3 Linear Birth Rate Sequences

Suppose that the birth rates form a linear increasing sequence, \; = A+ai for
i=0,...,nand A > 0. If A/a is a positive integer then the number of births
follows a negative binomial distribution with probability mass function

plt) = ()\/a +n— 1)6>\t(1 _ ety — e (1—6—6”)"71—[10\ + ai).

n n! a
i=0

It follows that

n!

fria() = (M)”ﬁ@m).

Now define ( Y L
1—e % /a a#0
a,t) = { t a=0

Then h(a,t) is continuous in both a and ¢ and the expression

—At

Foa(t) = (e 1)" [T+ ai) 3)
’ i=0

is valid for general a. As a — 0, f,4+1(f) converges to a gamma density and
hence we recover the Poisson distribution with mean A for p,(¢). For A/a a
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negative integer we recover the binomial distribution for p,, (t) with size —\/a
and probability 1 — e~%*. Although the negative binomial and binomial laws
for the count distributions require that A/a be an integer, the expression (3)
for the waiting time density remains valid for any a and A such that A4+ai > 0
fori=0,...,n.

The negative binomial saddlepoint approximation is defined as follows.
Let the \; be a general, not necessarily linear, sequence of birth rates. Let 0
satisfy

Find A > 0 and a > 0 such that

1
;)\—l—ai:l

and
n n

1 1
Z N2 T Z o
i=0 (A+ai) im0 (A —0)?
It is shown in the Appendix that there exists a unique solution for A and a
for any sequence of non-negative \;. The approximation is then given by (2)

with
n
e At

g(t) = h(a,t)" T\ + ai),

n!
i=0

n 1
=22 o ap
=0

and
- 1
=31y ———.
* ;()\—i—ai)‘l

Note that A/a is not restricted to be integer in this approximation.
In order to avoid numerical instability in limited precision arithmetic the
function h(a,t) can be computed as

t—at?/2 +a*t*/6  at <107°
ha,t) ~ { (1—e"%)/a at >107°

This yields h(a,t) to nearly full accuracy in standard 64-bit double precision
arithmetic.
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Table 1: Exact probabilities and percentage errors for saddlepoint approxi-
mations for the simple epidemic with A\, = (n +1)(5 —n) and ¢t = 0.1.

Prob. Normal Gamma, Neg. Binomial
n x100 First  Second First ~ Second First  Second
0 60.6531 8.4438 —0.2269 0.0000  0.0000 0.0000  0.0000
1 26.2003 4.1258  0.0100 —0.1137  0.0431 0.0000  0.0000
2 9.6413 2.7611  0.0062 —0.0534  0.0163 —0.0019  0.0022
3 2.8407 2.0846  0.0003 —0.0190  0.0046 —0.0009  0.0008
4 0.5973 1.6686 —0.0002 —0.0115  0.0020 —0.0001  0.0001
5 0.0674 1.3752  0.0032 —0.0256  0.0045 —0.0019  0.0011

4 Numerical Calculations

Daniels (1982) gave numerical calculations for a simple epidemic with A, =
(n+1)(N —n). We consider the same epidemics with N = 5 (Table 1 and
2) and N = 10 (Tables 3 and 4). Results are given for the usual saddlepoint
approximation based on the normal distribution and for the negative bino-
mial saddlepoint described in the previous section. Results are also given
for the saddlepoint approximation with a gamma density as leading term.
The approximations are based on the expansions for the log-densities with-
out renormalisation. In each case the tables give the percentage errors for
the approximations with and without the O(n=!) correction term. Exact
probabilities were computed numerically using the method of Sidje (1998).

The results show that the first term of the negative binomial approxima-
tion is considerably more accurate than the first term of the normal approx-
imation. The gamma approximation is also more accurate than the normal
when the range of \,t is not large. The correction term improves the normal
approximation very much more than it improves the gamma or negative bi-
nomial approximations. This is to be expected as the correction is obtained
from Hermite polynomials and the normal density. Nevertheless the negative
binomial approximation remains more accurate than the normal except in
isolated cases.

With N = 5 and ¢ = 0.1 the maximum relative error is reduced from
0.2% for the usual second-order saddlepoint approximation to 0.002% for the
negative binomial saddlepoint approximation with correction term. With
t = 1 the maximum relative error is reduced from 1% to 0.45%. With N = 10
and ¢t = 0.1 the maximum relative error is reduced from 0.6% to 0.02%. With
t = 1 the maximum relative error is reduced from 2% to 0.8%. The minimum
relative error is reduced to zero in each case, because the negative binomial
based approximation is always exact for n =0 and n = 1.

Further experiments show that, although there are isolated values of n
for which the normal saddlepoint is more accurate that the negative binomial
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Table 2: Exact probabilities and percentage errors for saddlepoint approxi-
mations for the simple epidemic with A\, = (n +1)(5 —n) and t = 1.

Prob. Normal Gamma Neg. Binomial
n x 100 First Second First Second First Second
0 0.6738 8.4438 —0.2269 0.0000  0.0000 0.0000  0.0000
1 1.0671 3.0869 —1.1499 —2.2276 —1.0836 0.0000  0.0000
2 1.9221 0.5093 —0.8416 —3.1423 —0.8183 —0.2822 —0.1687
3 4.2854 —0.1543  0.1389 —2.6627  0.1467 —0.5359  0.0199
4 13.8699 0.9616  0.0061 —0.8884  0.0091 0.1471 —0.1589
5 78.1817 —2.0778 —0.6616 —4.1672 —0.6569 —1.0578 —0.4482

Table 3: Exact probabilities and percentage errors for saddlepoint approxi-
mations for the simple epidemic with A\, = (n + 1)(10 — n) and ¢ = 0.1.

Prob. Normal Gamma Neg. Binomial
n x100 First  Second First Second First Second
0 36.7879 8.4438 —0.2269 0.0000  0.0000 0.0000  0.0000
1 25.3226 3.6496  0.1279 —0.6979  0.1641 0.0000  0.0000
2 16.5760 2.3281  0.1347 —0.5692  0.1459 —0.0193  0.0169
3 10.2136 1.7554  0.0942 —0.4044  0.0989 —0.0285  0.0223
4 5.8450 1.4430  0.0593 —0.2724 0.0616 —0.0288  0.0197
5 3.0508 1.2450  0.0349 —0.1749  0.0363 —0.0238 0.0143
6 1.4157 1.1039  0.0191 —0.1062  0.0199 —0.0165  0.0087
7 0.5623 0.9928  0.0094 —0.0614  0.0100 —0.0092 0.0043
8 0.1797 0.8972  0.0044 —0.0376  0.0048 —0.0039 0.0016
9 0.0412 0.8083  0.0032 —0.0328 0.0035 —0.0021  0.0008
10 0.0051 0.7187  0.0042 —0.0475  0.0045 —0.0064  0.0012
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Table 4: Exact probabilities and percentage errors for saddlepoint approxi-
mations for the simple epidemic with A\, = (n +1)(10 —n) and ¢t = 1.

Prob. Normal Gamma Neg. Binomial
n x 100 First Second First Second First Second
0 0.0045 8.4438 —0.2269 0.0000  0.0000 0.0000  0.0000
1 0.0057 6.7814 —0.5969 —0.0199 —0.4720 0.0000  0.0000
2 0.0073 5.9009 —0.7889 0.0020 —0.7051 0.0639  0.0270
3 0.0097 5.1804 —0.9517 —0.0505 —0.8921 0.1755  0.0681
4 0.0136 4.4635 —1.1187 —0.1985 —1.0756 0.3256  0.1121
5 0.0204 3.6457 —1.3128 —0.4836 —1.2822 0.4955  0.1369
6 0.0338 2.5798 —1.5661 —1.0064 —1.5455 0.6236  0.0849
7 0.0671 0.9542 —1.9275 —2.0227 —1.9152 0.4915 —0.1996
8 0.1923 —1.7380 —2.0998 —3.9428 —2.0944 —0.4789 —0.8457
9 1.4904 —0.1964 —0.4272 —1.6350 —0.4258 1.4494 —0.4677
10 98.1552 0.1840 —2.0674 —2.2964 —2.0601 0.4759 —0.3659

based saddlepoint, the latter is overall substantially more accurate.
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Appendix

Suppose that Ao, ..., A,, n > 1, are non-negative and that > 1/(X\; — 5) =
1. Let ko = Y1y 1/(\i — 0)2. Then 1/(n +1) < kg < 1. We seck A and a
such that > (1/(A4+ai) =1 and Y. ;1/(A + ai)? = ko. If the \; are all
equal then the solution is @ = 0 and A = Ag. If the A; are not all equal then
a # 0 and b = A/a is finite. Then a can be solved in terms of b as

n

a=> 1/(b+1i)

=0

and b solves N
S /bR
n v
{>iso1/(b+ 1)}
The left-hand side of (4) tends to 1 as b — 0 and to 1/(n + 1) as b — o0

and is monotonic decreasing between these two values. There is therefore a
unique non-negative solution for b and hence for a. The left-hand of (4) is

(4)
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in fact convex in b so that Newton’s method for finding b is monotonically
convergent from a suitable starting value.
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