Analysis of Complex Experiments

Statistical Methods in Microarray Analysis Tutorial Institute for Mathematical Sciences National University of Singapore January 3, 2004

> Gordon Smyth Walter and Eliza Hall Institute

What's Your Question?

- What are the targets genes for my knock-out gene?
 Gene discovery, differential expression
- Is a specified group of genes all up-regulated in a specified condition? Gene set differential expression
- Can I use the expression profile of cancer patients to predict chemotherapy outcome? Class prediction, classification
- Are there tumour sub-types not previously identified? Do my genes group into previously undiscovered pathways? Class discovery, clustering

This talk covers first question - differential expression

Types of microarrays in this talk

- Linear modelling approach in this talk applies to both single channel (Affymetrix) and two-colour arrays
- Need to cover some special features of two-colour arrays
- The examples are two-colour
- Two colour with common reference is virtually equivalent to single channel from an analysis point of view

Linear Models

- Analyse all arrays together combining information in optimal way
- Combined estimation of precision
- Extensible to arbitrarily complicated experiments
- Design matrix: specifies RNA targets used on arrays
- Contrast matrix: specifies which comparisons are of interest

Log-Ratios or **Single Channel Intensities?**

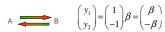
- Tradition analysis, as here, treats log-ratios M=log(R/G) as the primary data, i.e., gene expression measurements are relative
- Alternative approach treats individual channel intensities R and G as primary data, i.e., gene expression measures are absolute (Wolfinger, Churchill, Kerr)
- Single channel approach makes new analyses possible but
 - make stronger assumptions
 - requires more complex models (mixed models in place of ordinary linear models) to accommodate correlation between R and G on same spot
 - requires absolute normalization methods

Linear Models for Differential Expression

 $y = \log_2(R) - \log_2(G) \equiv B - A$

Allows all comparisons to be estimated simultaneously

Matrix Multiplication



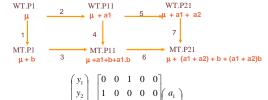
$$\beta \equiv B - A$$

$$\begin{bmatrix} A & \begin{pmatrix} y_1 \\ y_2 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \beta_1 \\ -\beta_1 \\ \beta_1 + \beta_2 \end{pmatrix} \qquad \beta_1 \equiv A - \operatorname{Ref} \\ \beta_2 \equiv B - A \end{bmatrix}$$

$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \end{pmatrix} = \begin{pmatrix} \boldsymbol{\beta}_1 \\ -\boldsymbol{\beta}_1 + \boldsymbol{\beta}_2 \\ -\boldsymbol{\beta}_2 \end{pmatrix} \qquad \qquad \boldsymbol{\beta}_1 \equiv \boldsymbol{B} - \boldsymbol{A}$$

Contrast
$$\beta_2 - \beta_1 \equiv C - B$$

Slightly larger example:



$$\begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ b \\ a_1b \\ a_2b \end{pmatrix}$$

Linear Model Estimates

Obtain a linear model for each gene g

$$E(y_g) = X \beta_g \operatorname{var}(y_g) = W_g^{-1} \sigma_g^2$$

Estimate model by robust regression, least squares or generalized least squares to get

coefficients

standard deviations

standard errors

 $\operatorname{se}(\hat{\beta}_{gj})^2 = c_{gj} s_g^2$

Parallel Inference for Genes

- ■10,000-40,000 linear models
- **■**Curse of dimensionality:

Need to adjust for multiple testing, e.g., control family-wise error rate (FWE) or false discovery rate (FDR)

■Boon of parallelism:

Can borrow information from one gene to another

Hierarchical Model

Normal Model

$$\hat{\boldsymbol{\beta}}_{gj} \sim N(\boldsymbol{\beta}_{gj}, c_{gj}\boldsymbol{\sigma}_g^2)$$

$$\hat{\beta}_{gj} \sim N(\beta_{gj}, c_{gj}\sigma_g^2) \qquad P(\beta_{gj} \neq 0) = p$$
$$\beta_{gj} \mid \beta_{gj} \neq 0 \sim N(0, c_{0j}\sigma_g^2)$$

$$s_g^2 \sim \sigma_g^2 \chi_{d_g}^2$$

$$s_g^2 \sim \sigma_g^2 \chi_{d_g}^2$$
 $\sigma_g^2 \sim s_0^2 \left(\chi_{d_0}^2 / d_0 \right)^{-1}$

Generalization of Lönnstedt and Speed 2002

Normality, independence assumptions are wrong but convenient, resulting methods are useful

Posterior Statistics

Posterior variance estimators

$$\tilde{s}_g^2 = \frac{s_g^2 d_g + s_0^2 d_0}{d_g + d_0}$$

Moderated t-statistics

$$ilde{t}_{gj} = rac{\hat{eta}_{gj}}{ ilde{s}_{gj} \sqrt{c_{gj}}}$$

Eliminates large t-statistics merely from very small s

Posterior Odds

Posterior probability of differential expression for any gene is

$$\frac{p(\beta \neq 0 \mid \hat{\beta}, s^2)}{p(\beta = 0 \mid \hat{\beta}, s^2)} = \frac{p}{1 - p} \left(\frac{c}{c + c_0}\right)^{1/2} \left\{ \frac{\tilde{t}^2 + d + d_0}{\tilde{t}^2 \frac{c}{c + c_0} + d + d_0} \right\}^{\frac{1}{2}}$$

Monotonic function of \tilde{t}^2 for constant d

Generalization of Lönnstedt and Speed 2002

Within-Array Replicate spots

- Replicate spots of each gene on same array, assume duplicates at regular spacing
- Assume spatial component of correlation between duplicates is same for each gene
- Estimate spatial correlation from consensus estimator across genes
- Greatly improves estimation of precision

14

Implications for Design

- Given linear modelling approach, can compute efficiency of various experimental designs
- Need to specify which RNA sources are to compared and which contrasts are of interest

15

17

13

Comparing 3 RNA Sources	I (a) Common reference	I (b) Common reference	Il Direct comparison		
	A P L	A P L 2 2 2 W	L A P		
Number of Slides	N = 3	N=6	N=3		
Ave. variance	2		0.67		
Units of material					
Ave. variance					

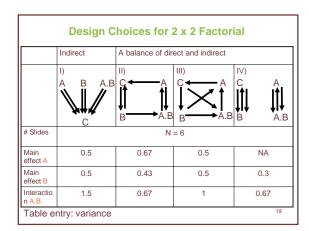
For k = 3, efficiency ratio (Design I(a) / Design II) = 3 In general, efficiency ratio = 2k / (k-1)

16

Comparing 3 RNA Sources	I (a) Common reference	I (b) Common reference	II Direct comparison		
	A P L	A P L	L A P		
Number of Slides	N = 3	N=6	N=3		
Ave. variance	2		0.67		
Units of material	A = B = C = 1	A = B = C = 2	A = B = C = 2		
Ave. variance		1	0.67		

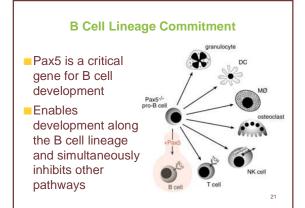
In general, efficiency ratio = k / (k-1)

Desi	esign Choices in Time Series		t vs t+1		t vs t+2				
		Ī	T1T2	T2T3	T3T4	T1T3	T2T4	T1T4	Ave
N=3	A) T1 as common reference	•	1	2	2	1	2	1	1.5
	$T1 \longrightarrow T2$ $T3$ T	4							
	B) Direct Hybridization		1	1	1	2	2	3	1.6
	$T1 \longrightarrow T2 \longrightarrow T3 \longrightarrow T$	4							
N=4	C) Common reference T1 T2 T3 T		2	2	2	2	2	2	2
	D) T1 as common ref + more $T1 \longrightarrow T2 \longrightarrow T3 \qquad T$.67	.67	1.67	.67	1.67	1	1.0
	E) Direct hybridization choice 1		.75	.75	.75	1	1	.75	.83
	F) Direct Hybridization choice 2		1	.75	1	.75	.75	.75	.83



Case Study: B Cell Lineage Commitment

20



How Does Pax5 Work?

Design a microarray experiment to identify genes downstream from Pax5 in the molecular pathways

22

Halted Development

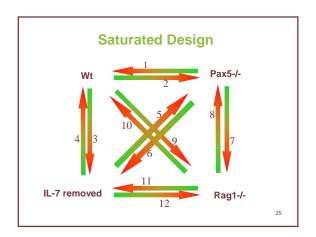
- ■B cell development can be halted at the pro B stage by
 - Absence of the Pax5 gene
 - Absence of the Rag1 gene (which activates recombination)
 - Withdrawal of the regulatory cytokine IL-7 (essential growth factor)

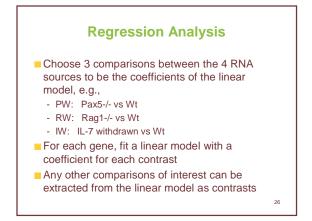
23

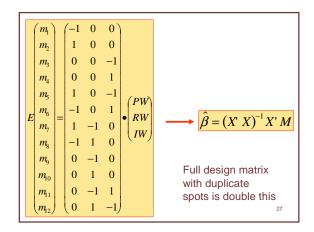
RNA Sources

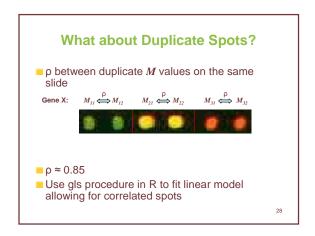
- Compare RNA from 4 sources:
 - Pax5-/- (knock-out cell line)
 - Rag1-/- (knock-out cell line)
 - Wt ("wild type", i.e., normal)
 - Wt cells with IL-7 removed after initial development commenced
- Rag1-/- and IL-7 removal identify genes turned on or off by halted development rather than by Pax5

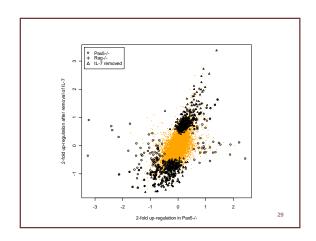
24

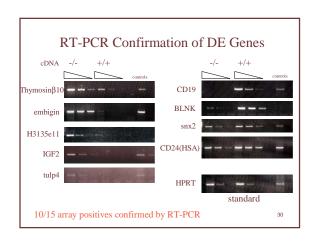


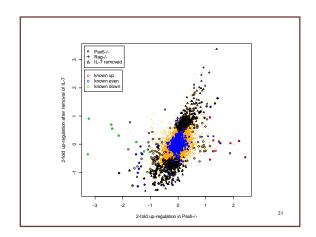


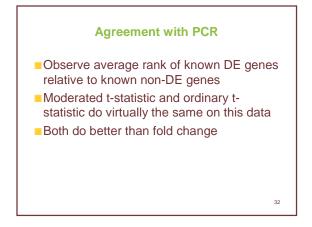


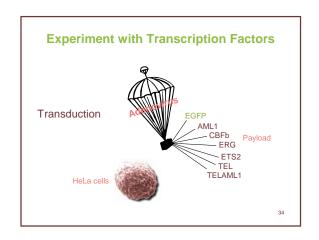


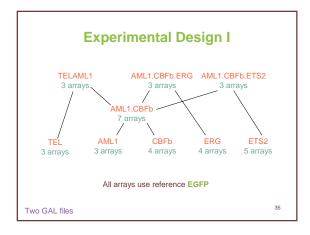


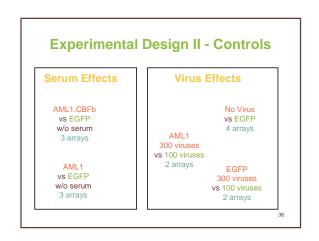












Comparisons of Interest

- Ordinary comparisons with EGFP: N, A, C, R, T, AC, RAC, TAC, TEL, TELAML1
- Comparisons with no virus condition: A-N, C-N, R-N, T-N, AC-N, RAC-N, TAC-N, TEL-N, TELAML1-N
- Interaction comparisons: AC-A, AC-C, RAC-R, RAC-AC, TAC-T, TAC-AC, TELAML1-TEL, TELAML1-AC
- Control comparisons: ACwos, Awos, Awos-A, ACwos-AC, G300-G100, A300-A100

37

Linear Models

- Design matrix is straightforward here because of use of common reference
- Lots of contrasts of interest
- Raises question of simultaneous inference across the contrasts, as well as across genes

38

Moderated F-tests

Can combine several t-tests together in an F-test to test several hypotheses simultaneously

lf

$$\beta_q = 0$$

then

$$rac{\hat{eta}_g^T X^T W X \hat{eta}_g}{ ilde{s}_s^2} \sim F_{k,d+d_0}$$

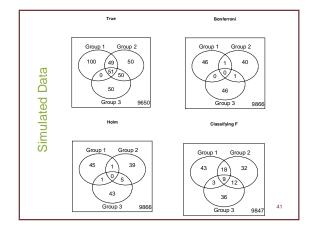
Non-null prior on β doesn't enter

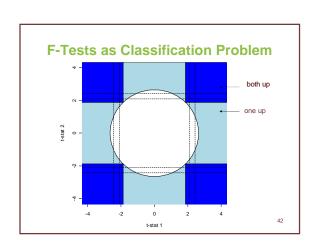
39

Classifying Genes

- Any method of classifying genes as up, down or neutral for each transcription factor individually will underestimate the number of genes co-regulated by two or more transcription factors
- Classifying F-test method classifies each gene over any number of comparisons arising from a linear model
- More realistic idea of co-regulation

40





Composite Classification Method

- ■F-test classification is not very powerful for detecting genes which respond to one condition (TF) only when there are many comparisons
- Final classification method was a composite of classifying F and individual t

43

Filtering of EGFP Responders

Include TF vs EGFP differences only if they are not reproduced by the no virus vs EGFP comparison

No virus response (N)	AML1 response (A)	AML1 vs no virus contrast (A-N)	Keep?	
0	1		Yes	
1	1	1	Yes	
1	1	0	No	

44

Summary

- Analyse data all at once
- Use standard deviances not just fold changes
- Use ensemble information to shrink variances
- Assess differential expression for all comparisons together

46

Analysis Strategies

- Stable background estimation
- Intensity/spatial normalization
- Robustness
- Automatic spot quality weights
- Estimate variability
- Smoothing across genes
- Linear modelling
- Duplicate spots
- Differential expression as classification

Allows high-through put analysis

47

LIMMA Package for R

- Linear models for microarray data. A software package for the R programming environment. Focus is differential expression including
 - moderated t-statistics
 - methods for duplicate spots
 - classifying F-tests
 - stemmed heat diagrams

Available from www.bioconductor.org

48

