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Abstract

RNA sequencing (RNA-seq) is widely used to study gene expression
changes associated with treatments or biological conditions. Many popu-
lar methods for detecting differential expression (DE) from RNA-seq data
use generalized linear models (GLMs) fitted to the read counts across in-
dependent replicate samples for each gene. This article shows that the
standard formula for the residual degrees of freedom (d.f.) in a linear
model is overstated when the model contains fitted values that are ex-
actly zero. Such fitted values occur whenever all the counts in a treatment
group are zero as well as in more complex models such as those involving
paired comparisons. This misspecification results in underestimation of
the genewise variances and loss of type I error control. This article pro-
poses a formula for the reduced residual d.f. that restores error control
in simulated RNA-seq data and improves detection of DE genes in a real
data analysis. The new approach is implemented in the quasi-likelihood
framework of the edgeR software package. The results of this article also
apply to RNA-seq analyses that apply linear models to log-transformed
counts, such as those in the limma software package, and more generally
to any count-based GLM where exactly zero fitted values are possible.

Keywords: RNA sequencing, differential expression, generalized linear models, quasi-

likelihood

1 Introduction

Transcriptional profiling with RNA sequencing (RNA-seq) is widely used to
study gene expression profiles associated with a particular biological condition.
A common aim of RNA-seq studies is to detect differentially expressed (DE)
genes between two or more conditions. To do so, the number of sequencing
reads mapped to the exons of each gene is counted to quantify the expression of
that gene (Liao et al., 2014). This is performed for multiple replicate libraries in
each condition, where each replicate is prepared from an independent biological
sample. Statistical analyses can then be performed with methods like edgeR

(Robinson et al., 2010) to identify genes with significant differences in the read
counts between conditions (Anders et al., 2013). These putative DE genes are
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the basis for further investigation into the mechanisms driving the biological
difference of interest.

The differential expression analysis must be able to handle discrete count
data with extra-Poisson variability between biological replicates. To this end,
the counts for each gene can be fitted to generalized linear models (GLMs) based
on the negative binomial (NB) distribution (McCarthy et al., 2012). Overdis-
persion in the counts between replicates is modelled with the NB dispersion
parameter. Further sophistication can be added with the quasi-likelihood (QL)
framework (Lund et al., 2012), which introduces an additional QL dispersion
parameter to model estimation uncertainty. The mean-variance relationship of
the count ygi for gene g in library i can then be written as

var(ygi) = σ2
g(µgi + µ2

giφg)

where µgi is the mean, φg is the NB dispersion and σ2
g is the QL dispersion. Lund

et al. (2012) used a global abundance-trend to estimate the NB dispersions φg
while the QL dispersions σ2

g were allowed to be gene-specific. The small number
of replicates means that there is often insufficient information to stably estimate
the QL dispersion for each gene using only data from that gene. Imprecision is
avoided by using empirical Bayes (EB) methods that share information between
genes. These methods stabilize the QL dispersion estimates and improve power
to detect differential expression (Phipson et al., 2016).

Fitting a GLM to RNA-seq data involves estimation of real-valued model
coefficients from discrete non-negative counts. Consider an RNA-seq data set
with n libraries. Assume that a stable estimate of the common or trended
NB dispersion has been obtained by using an EB approach across all genes
(McCarthy et al., 2012). For each gene, a GLM is fitted to the n counts using
the estimated NB dispersion and a design matrix X that has p independent
coefficients. The residual degrees of freedom (d.f.) is canonically defined as

d = n− p .

This represents the number of counts that need to be known in order to derive
all n counts, given the estimates of the p coefficients from the fitted model. The
total residual deviance of the fitted model for gene g is denoted as Dg, and is
distributed as

Dg|σ2
g ∼ σ2

gχ
2
d

where σ2
g is the QL dispersion for g. This distribution is based on analogous

behaviour under normality (Lund et al., 2012). The deviance estimator of σ2
g is

defined as
σ̂2
g = Dg/d .

Thus, correct calculation of the residual d.f. is necessary for QL dispersion
estimation in the EB framework described by Lund et al. (2012).

The appropriate residual d.f. may not be obvious when zeroes are present
in the set of counts for a gene. Any library that has a fitted value of zero must
also have a count of zero. This will not contribute any d.f. to the fit, because
no additional observations need to be known to identify the count as zero. As
such, the true residual d.f. will be lower than the canonical value d. Dg will also
be lower than expected, as the unit deviance will be zero for libraries where the
fitted value and count are identical. Thus, the above expression for σ̂2

g will be
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incorrect. The unit deviance will be exactly zero when the fitted value is zero.
This occurs regardless of the true value of σ2

g , showing that these observations
contribute no information to the estimation of σ2

g .
This paper demonstrates that the use of the canonical residual d.f. can result

in underestimation of the QL dispersion and loss of type I error control in the
presence of zero counts. A corrected definition of the residual d.f. is given for
genes that have fitted values of zero for some libraries. The performance of this
solution compares favourably to the canonical defininition on both simulated
and real datasets.

2 Correctly specifying the residual d.f.

2.1 Definition of the reduced residual d.f.

Let µ̂gi denote the fitted value for library i in the GLM for this gene. Assume
that there is a set of libraries Zg for which µ̂gi = 0 in each library i ∈ Zg.
For each of these libraries, the count ygi must also be zero as all counts are
non-negative and any positive count would result in µ̂gi > 0. Knowing that
µ̂gi = 0 means that ygi = 0, which can be determined without the need to
know any other count. Thus, libraries in Zg will not contribute any d.f. to the
fit. The canonical definition for the residual d.f. fails to consider this subtlety.
Consequently, the computed value for d may be larger than the true residual
d.f. The latter is denoted as dg and will be referred to as the “reduced residual
d.f.” in the following text.

The value of dg can be determined by identifying and ignoring the libraries
in Zg. In practice, this is done by removing all libraries with fitted values below
some arbitrarily small value like 10−4. This ensures that libraries in Zg are not
overlooked due to numerical imprecision of the model fit. The effective number
of libraries for gene g becomes n − |Zg|. Similarly, a refined design matrix Xg

can be constructed by removing all rows in X corresponding to i ∈ Zg. When
Xg is fitted to the counts for the remaining libraries, the reduced residual d.f.
is defined as

dg = n− |Zg| − rank(Xg)

where the column rank of Xg is simply the number of independent coefficients
in Xg. This can be obtained by performing a QR decomposition on Xg and
counting the number of non-zero diagonal elements in the resulting R matrix.
The above expression for dg is appropriate as it explicitly ignores the libraries
that do not contribute any d.f. to the model fit. This avoids any overestimation
of the residual d.f. that might occur with the canonical definition. Of course,
dg = d if Zg is empty as the rank of Xg is equal to p.

2.2 Overview of the canonical QL framework

Lund et al. (2012) assume that σ2
g ∼ σ2

0χ
−2
d0

across all genes g, where d0 is the

prior d.f. and σ2
0 is a constant scaling factor. This means that σ̂2

g ∼ σ2
0F (d, d0).

Both d0 and σ2
0 can be simultaneously estimated from the distribution of σ̂2

g

across all g (Smyth, 2004; Phipson et al., 2016). The shrunken dispersion in the
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EB framework is defined as

σ̃2
g =

d0σ
2
0 + dσ̂2

g

d0 + d
,

which effectively squeezes σ̂2
g towards the estimated σ2

0 for each gene.
The QL F-test is used to test a pre-specified null hypothesis by comparing

nested designs. One or more columns are chosen and removed from X to ob-
tain the null design matrix X0. The moderated F-statistic uses the shrunken
dispersion and is defined as

Fg =
LRg/t

σ̃2
g

where t is the difference in the number of coefficients between designs and LRg

is the likelihood ratio, i.e., the difference in the total residual deviances between
GLMs fitted with X0 and X. Under the null hypothesis, Fg will be F-distributed
on t and d+d0 d.f.’s. This can be used to compute a p-value to reject or accept
the null for each gene. In practice, a lower bound for the p-value is defined
by using the likelihood ratio test after fitting a Poisson GLM to the counts for
each gene. This reflects the fact that RNA-seq data should exhibit at least
Poisson-level variance due to sequencing noise (Marioni et al., 2008).

2.3 Redefined statistics with the true residual d.f.

The canonical definitions are only correct for gene g when d = dg. If these
two values are not equal, all occurrences of d should be replaced with dg. For
simplicity, assume that all libraries i ∈ Zg have true means close to zero. This
is reasonable in most replicated designs, where a fitted value of zero from a
large true mean would require zero counts for all replicate observations (which
is unlikely). The assumption means that the libraries in Zg do not contribute
to any sampled instance of Dg, i.e., the unit deviance from each library will
always be zero. Thus, Dg|σ2

g ∼ σ2
gχ

2
dg

as only those libraries contributing d.f.
are considered. The correct estimator of the QL dispersion for gene g is defined
as

σ̂2
g(2) = Dg/dg .

This expression ensures that E(σ̂2
g(2)|σ

2
g) is still equal to σ2

g when Zg is not

empty. EB shrinkage should be performed using the distribution of σ̂2
g(2) across

all genes, instead of σ̂2
g . This ensures that the correct scaling factor σ2

0(2) and
prior d.f. d0(2) are estimated. The shrunken dispersion for each gene is similarly
redefined as

σ̃2
g(2) =

d0(2)σ
2
0(2) + dgσ̂

2
g(2)

d0(2) + dg

while the moderated F-statistic is redefined as

Fg(2) =
LRg/t

σ̃2
g(2)

.

This is F-distributed on t and dg + d0(2) d.f.’s, and can be used to compute a
p-value as previously described.
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3 Assessing performance on simulated data

3.1 The canonical method underestimates the dispersion

Consider a one-way layout with two replicate libraries in each of four conditions
A1, A2, B1 and B2. NB-distributed counts for 10000 genes were generated using
a dispersion of 0.05 and a mean of µc for each library in condition c. For the
first 5000 genes, µA1

= µA2
= 0 and µB1

= µB2
= 200, while for the last

5000 genes, µA1 = µA2 = 200 and µB1 = µB2 = 0. This simulation design
ensures that each library has a non-zero total number of reads for downstream
normalization. (A constant value of 200 is only chosen for simplicity, and can
be replaced with other non-zero values specific to each gene without affecting
the results.) Methods in the edgeR package v3.16.5 were then used to estimate
a common NB dispersion across all genes and to fit a NB GLM to the counts
for each gene. QL dispersion estimates σ̂2

g and σ̂2
g(2) were computed for each

gene as previously described, and the mean and standard error of each value
was computed over all genes.

The expected value of the QL dispersion in this simulation is σ2
g = 1 for each

gene. This is because counts are exactly NB-distributed such that no QL-based
modification of the mean-variance relationship is required. Estimation of the
mean σ̂2

g across all genes yields a value of 0.508 whereas the mean σ̂2
g(2) is 1.016,

with negligible standard errors in both cases. The latter is closer to the expected
value for σ2

g , indicating that the reduced definition is correct. This difference in
behaviour is due to the presence of zero counts such that dg = 2. In contrast,
d = 4 as one d.f. is provided from each condition in the experimental design.
This drives the two-fold underestimation of the QL dispersion across all genes
when d is used.

3.2 Assessing type I error control

3.2.1 Details of the simulation design

Consider a one-way layout with two replicates in each of four conditions for
10000 genes, similar to that described in Section 3.1. A set K was defined
containing 5 to 100% of all genes. For half of all genes in K, zero counts were
added by setting µA1

= µA2
= 0 and µB1

= µB2
= 200. For the other half,

µA1 = µA2 = 200 and µB1 = µB2 = 0. Otherwise, for genes not in K, µc = 100
for each library in all conditions. This setup ensures that library sizes are
always non-zero for downstream normalization. Values of µc were also chosen
such that the expected average count over all libraries was constant for all genes.
This ensures that any changes in the observed error rate are not simply driven
by changes in overall abundance when different proportions of genes with zero
counts are added. NB-distributed counts were generated for each gene using the
condition-specific means. The NB dispersion for each gene was sampled from
an inverse chi-squared distribution on 20 d.f. to simulate variable dispersions.

The null hypothesis of µB1
= µB2

was tested for most genes, using the
QL framework in edgeR with the canonical and reduced residual d.f.’s. This
hypothesis was chosen as it is true for all genes, meaning that the resulting
p-value distribution can be used to assess type I error control. For genes where
µB1

= µB2
= 0, the null hypothesis of µA1

= µA2
was tested instead. This

avoids a trivial result when the counts for all libraries in B1 and B2 are fixed
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Table 1: Observed type I error rates at a range of specified thresholds in the
four-condition simulation, using the canonical or reduced residual d.f. in the QL
framework. Each simulation scenario has a different proportion of genes with
zero counts. For each error rate, the mean was computed over 20 simulation
iterations and is shown as a percentage (standard error in brackets).

Prop. (%) Method
Type I error threshold (%)

0.1 1 10

5
Canonical 0.0615 (0.0071) 0.9070 (0.0203) 10.2590 (0.0690)
Reduced 0.0970 (0.0098) 0.9750 (0.0232) 9.8505 (0.0764)

20
Canonical 0.0720 (0.0060) 1.1585 (0.0251) 12.4570 (0.0765)
Reduced 0.1120 (0.0072) 1.0055 (0.0212) 10.0155 (0.0591)

50
Canonical 0.2245 (0.0099) 2.5935 (0.0373) 17.6345 (0.0931)
Reduced 0.0975 (0.0064) 0.9650 (0.0183) 9.7920 (0.0769)

100
Canonical 1.2255 (0.0325) 7.0730 (0.0609) 28.0380 (0.1127)
Reduced 0.1200 (0.0115) 1.0105 (0.0379) 10.0040 (0.0979)

at zero. The observed type I error rate was defined as the proportion of genes
with p-values below a specified threshold. Multiple simulation iterations were
performed and the mean error rate was calculated, along with its standard error.
Mean estimates and standard errors for σ2

0 or σ2
0(2) and d0 or d0(2) were also

computed across iterations.

3.2.2 The canonical method fails to control type I error

In all tested scenarios, the observed error rate for the reduced residual d.f. is
closer to the threshold than that for the canonical d.f. (Table 1). This is
consistent with the correctness of the reduced d.f. and its associated statistics
when zero counts are present.

Loss of type I error control for the canonical method is observed in some
scenarios. This is attributable to underestimation of the QL dispersion, which
inflates the F-statistic and decreases the p-value for each gene in K. Moreover,
this error is propagated to all genes through EB shrinkage. Smaller values of σ̂2

g

for g ∈ K will drag down the estimated scaling factor σ2
0 . Indeed, increasing the

size of K results in a drop in the estimated σ2
0 in the simulations (Table 2). Thus,

even the correct σ̂2
g for genes not in K will be shrunk towards an inappropriately

small estimate for σ2
0 . Subsequent underestimation of σ̃2

g inflates the moderated
F-statistic for all genes in the analysis.

The canonical method is also conservative in some scenarios. This is driven
by an increase in the variability of the dispersions when zero counts are present.
Recall that the QL dispersions for g ∈ K are consistently underestimated. This
results in a population of dispersion estimates that is distinct from those for
g 6∈ K, inflating the apparent variability of σ̂2

g . In the EB framework, this
manifests as a decrease in the estimated prior d.f. when more genes are present
with zero counts (Table 2). Smaller d0 has a number of consequences, the most
obvious of which is the decrease in the second d.f. of the QL F-test. This leads
to larger p-values as the variance of Fg will be overestimated.
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Table 2: EB statistics for the four-condition simulation with differing propor-
tions of genes with zero counts in two conditions. The estimated scaling factor
and prior d.f. were computed using the canonical and reduced definitions for
the residual d.f. All values represent the mean over 20 simulation iterations.
Standard errors are also shown in brackets.

Prop. (%)
Scaling factor Prior d.f.
σ2
0 σ2

0(2) d0 d0(2)
5 0.88 (0.00) 0.95 (0.00) 15.2 (0.3) 30.1 (1.1)
20 0.70 (0.00) 0.94 (0.00) 6.2 (0.1) 28.8 (1.2)
50 0.45 (0.00) 0.94 (0.00) 3.1 (0.0) 27.2 (2.0)
100 0.25 (0.00) 0.94 (0.00) 2.5 (0.0) 33.1 (6.1)

The overall effect of using the canonical d.f. on the type I error rate is not
easy to predict. The outcome depends on whether the conservativeness from
the reduced d0 can offset the liberalness from the underestimation of σ2

g and
σ2
0 . Liberalness will also be introduced by the use of the larger d instead of
dg to compute the second d.f. of the QL F-test. In addition, the shrunken
dispersion will change as d0 decreases, though the overall effect is unclear as σ̃2

g

will increase for some genes and decrease for others. This unpredictability can
be avoided by using the reduced residual d.f. to correctly estimate d0(2) and
σ2
0(2).

3.3 Care is required when the reduced residual d.f. is zero

Some additional care is required when dealing with genes where dg = 0. These
genes provide no information on the variability of the counts and have undefined
σ̂2
g(2). This means that they cannot be used to estimate σ2

0(2) or d0(2). However,
the null hypothesis can still be tested for these genes. As dg = 0, the expression
for the shrunken dispersion σ̃2

g(2) simply collapses to σ2
0(2). This means that

Fg(2) and a p-value can be computed.
To demonstrate, consider a one-way layout containing three conditions A,

B1 and B2 for 10000 genes. Condition A contains two replicates whereas B1

and B2 contain one replicate each. For the first 50% of genes, µA = 0 and
µB1

= µB2
= 200. This simulates non-DE genes between B1 and B2 for which

there are no residual d.f.’s. For the remaining genes, µA = 200 and µB1 =
µB2 = 0. This setup ensures that all library sizes are non-zero and that σ2

0(2)

and d0(2) can be estimated from genes with defined QL dispersions. Counts
for each library were sampled from a NB distribution with the specified mean.
The QL framework was applied using the reduced residual d.f., and the null
hypothesis µB1

= µB2
was tested for the first 50% of genes. The observed type

I error rate was computed at a nominal threshold of 1%. This was repeated for
20 simulation iterations, yielding a mean error rate of 0.91% with a standard
error of 0.09. Similar results were obtained at thresholds of 0.1% (0.14±0.03%)
and 10% (9.72 ± 0.19%). Error rates close to the nominal threshold indicate
that the QL framework remains valid when dg = 0.
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3.4 Effect on log-transformed counts in linear models

3.4.1 Overview

An alternative approach to analyzing count data involves fitting a linear model
to log-CPM values (Law et al., 2014). Consider an example data set where
all libraries have 106 reads. Any zeroes will be converted into a lower bound
for the log-CPM, e.g., log2(0 + 0.5) = −1 where the 0.5 represents a continuity
correction. If any fitted value of the linear model is equal to the lower bound, the
corresponding log-CPM must also be equal to the lower bound, as no smaller
log-CPM can exist. Thus, no d.f. will be provided by those libraries, which
means that the canonical definition of the residual d.f. may be incorrect. This
can be remedied for each gene by removing all libraries with fitted values equal
to the lower bound. Linear modelling and variance estimation will then be
performed using the reduced d.f. as described above for GLMs.

To demonstrate, NB-distributed counts for a four-condition design were sim-
ulated as described in Section 3.1. The voom function was applied to log-
transform the counts and to compute precision weights from a fitted mean-
variance trend. A linear model was fitted to the log-CPM values with the pre-
cision weights using limma v3.30.9, and an EB strategy was applied to robustly
shrink the variances (Phipson et al., 2016). The mean variance estimate across
all genes was recorded. The F-test was applied to compute p-values against the
null hypothesis, i.e., µB1

= µB2
for the first 5000 genes, and µA1

= µA2
for

the last 5000 genes (again, this distinction avoids a trivial result when means
and counts are fixed at zero for some libraries). As the null is always true,
the distribution of p-values across all genes should be uniform. The analysis
was repeated after removing libraries with µc = 0 from the dataset and design
matrix prior to fitting, i.e., all libraries in A1 and A2 for the first 5000 genes, or
in B1 and B2 for the last 5000 genes.

The mean sample variance across all genes was estimated as 0.065 and 0.132
using the canonical and reduced definitions, respectively. This fold difference
is consistent with the differences in the residual d.f.’s, i.e., d = 4 and dg = 2.
Type I error control was subsequently lost with the canonical method (Fig-
ure 1), consistent with the liberalness observed in simulations for NB-based
GLMs. Uniformity of the p-values was restored by removing the libraries in
the offending conditions. This ensured that the reduced residual d.f. was used
during modelling. In practice, removal of offending libraries is complicated by
the presence of variable library sizes, resulting in a variable lower bound that
is difficult to define for any given library. For simplicity, such cases will not be
considered here.

4 Effect of d.f. specification on real data

4.1 Overview

To determine the relevance of the simulation results, analyses with the canonical
and reduced residual d.f.’s were compared on a real RNA-seq dataset. Data was
generated from a Pax5 knock-out experiment in pro-B cells by Drs. Rhys Allan
and Steve Nutt in the Molecular Immunology division of the Walter and Eliza
Hall Institute of Medical Research. This dataset contains two replicate libraries
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Figure 1: Histograms of p-values generated by voom and limma on simulated
count data, before and after removal of libraries with true means of zero.

for the knock-out (KO) condition and one replicate for the wild-type (WT)
condition.

4.2 Processing steps for real RNA-seq data

Paired-end sequencing was performed by the Beijing Genomics Institute on an
Illumina HiSeq 2000. Each library consisted of approximately 9 million pairs of
90 bp reads. Reads were aligned to the mm10 build of the mouse genome using
subread v1.4.6 (Liao et al., 2013) in paired-end mode with unique mapping
and tie splitting by Hamming distance. Read pairs were summarized into gene
counts using the featureCounts function (Liao et al., 2014) in the Rsubread

package v1.18.1. The number of fragments mapped to exons was counted for
each gene in the NCBI mouse build 38 annotation. Note that each read pair
corresponds to a single cDNA fragment and is counted no more than once.
Reads with MAPQ scores below 10 were ignored to avoid non-uniquely/poorly
mapped reads. Approximately 64% of read pairs in each library were counted
into genes.

Genes were filtered to remove those with a count sum across all libraries
below 10. This removes lowly expressed genes that are unlikely to be DE and is
roughly independent of the p-values when library sizes are similar. A differential
expression analysis was performed using edgeR to compare the WT and KO
conditions. Briefly, a trended NB dispersion was estimated and used for GLM
fitting. Offsets were defined from the log-transformed effective library sizes, after
using TMM normalization (Robinson and Oshlack, 2010) to remove composition
biases. Raw QL dispersions were estimated with the canonical residual d.f.,
as previously described. A second mean-dependent trend was fitted to the
raw QL estimates, and EB shrinkage was performed towards this trend (Lund
et al., 2012). Trend fitting is necessary here to empirically model non-NB mean-
variance relationships, but was not required for the simulations where counts
were exactly NB-distributed for simplicity. Finally, the QL F-test was used to
compute a p-value for each gene.

Genes were considered to be significantly DE if the false discovery rate (FDR)
was < 5% after applying the Benjamini and Hochberg method to all p-values.
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Figure 2: QL dispersion estimates for the Pax5 dataset. (a) Histogram of log-
transformed gene-wise estimates using the canonical d.f. A small prior was
added to avoid undefined values. The black bar marks genes with a reduced
residual d.f. of zero. (b) Loess-fitted trend in the estimates for all genes, using
the average abundance as the covariate. Results are shown before (full) and
after (dashed) removing genes with no residual d.f.

This was repeated using the reduced residual d.f. and its associated statistics.

4.3 Differences between definitions are present in real data

The QL framework was applied with the reduced and canonical residual d.f.’s
to identify DE genes between WT and KO cells. For the canonical analysis, a
cluster of low dispersion estimates was observed (Figure 2a). These correspond
to 139 genes that have zero counts in the two KO samples. Here, there are no
residual d.f. so the deviance is always zero. As d = 1, σ̂2

g is incorrectly defined as
zero for these genes. In comparison, σ̂2

g(2) is undefined when dg = 0 and should
not participate in EB shrinkage. Removal of the corresponding genes increased
the estimated prior d.f. from 2.71 to 5.17 and increased the estimated QL
dispersions (Figure 2b). This is consistent with inflation of heteroskedasticity
and underestimation of the QL dispersion when d is used instead of dg in the
simulations.

Hypothesis testing was also performed to identify DE genes using the reduced
and canonical methods. At a FDR of 5%, the number of DE genes increased
from 1926 to 2809 when dg was used instead of d. Reduced detection with the
canonical d.f. is consistent with the conservativeness observed in Table 1, where
the drop in d0 outweighs the liberalness caused by the underestimation of σ2

g and
σ2
0 . Note that the 139 genes with undefined σ̂2

g were identified as DE in both the
reduced and canonical methods. This is not unexpected, given that the counts
are zero in the KO samples and equal to or greater than 10 in the WT sample.
However, it does illustrate that incorrect estimation of the dispersion for some
genes will affect inferences for the entire data set. Almost 900 DE genes were
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uniquely detected when the reduced method was used instead of the canonical
method, despite the fact that all of them have correctly defined d = dg = 1.
This unique set includes genes such as Tnfaip3 (adjusted p-value of 0.035), Id2
(0.023) and Nfatc2 (0.021) that have been implicated in B-cell differentiation
(Chu et al., 2011; Becker-Herman et al., 2002; Peng et al., 2001). Such genes
would not have been identified as putative downstream targets of Pax5 if the
canonical method was used.

5 Differences are recapitulated in realistic sim-
ulations

The previous simulations were intentionally simplified to highlight the effects
of misspecifying the residual d.f. To demonstrate that such effects were still
present in realistic scenarios, additional simulations were performed based on
the Pax5 data. For each gene g, the trended NB dispersion φg and the average
count were estimated from the Pax5 counts using edgeR as described above.
This recapitulates the distribution of abundances and the mean-dispersion re-
lationship present in real data. A new value for the dispersion was obtained by
sampling from φgν/χ

2
ν , where ν = 5 based on the prior d.f. estimated above.

(This mimics the spread of gene-specific dispersions around the trend in real
data.) The sampled dispersion and average count were set as the parameters of
a NB distribution, from which one count was sampled for each library to obtain
a gene-specific expression profile. This was repeated for each gene to generate
a simulated data set.

Two experimental designs were considered in this simulation – a one-way
layout containing four groups (A1, A2, B1, B2) of two replicates each, and a
paired-samples design containing four pairs containing one sample from each of
two groups (A1, A2). To introduce fitted values of zero to the simulation, half
of all genes were allocated into the set K. For each gene in K, counts were set
to zero for all samples in B1 and B2 in the one-way layout, or for all samples in
two pairs in the paired-samples design. The QL framework was then applied to
test the null hypothesis of equal expression in A1 and A2. This motivates the
choice of samples to set to zero, as it ensures that the null hypothesis is still true
for all genes. The observed type I error rate was estimated as the proportion of
genes with p-values below the specified threshold. This was done separately for
genes in and outside of K, to determine the effect of misspecified residual d.f.
on each class of genes. The large size of K ensures that stable estimates of the
observed type I error rates can be obtained.

The use of the reduced d.f. in the QL framework controlled the observed type
I error rate close to or below the specified threshold in all simulation scenarios
(Table 3). This is consistent with the proper specification of the residual d.f. in
the presence of fitted values of zero. In contrast, use of the canonical d.f. yielded
liberal results for all genes in K. This is attributable to underestimation of the
QL dispersion when the residual d.f. is overstated. More subtle loss of type I
error control was also observed for genes outside of K at some thresholds, caused
by distortion of the EB statistics when the QL dispersions in K are incorrectly
estimated. These results indicate that the advantages provided by the reduced
d.f. are still present in realistic scenarios.
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Table 3: Observed type I error rates at a range of thresholds in simulations
based on real data, using the canonical or reduced d.f. in the QL framework.
Simulations were performed using a one-way layout or a paired-samples design.
Separate error rates are shown for genes in and outside K. Each value represents
the mean error rate across 20 simulation iterations, with the standard error
shown in brackets.

Design Method
Type I error threshold (%)

0.1 1 10

One-way

Canonical (in K) 0.648 (0.019) 4.249 (0.062) 21.683 (0.114)
Canonical (not in K) 0.085 (0.008) 1.202 (0.028) 12.302 (0.110)
Reduced (in K) 0.122 (0.010) 0.953 (0.022) 9.450 (0.088)
Reduced (not in K) 0.096 (0.009) 0.945 (0.029) 9.958 (0.098)

Paired

Canonical (in K) 1.998 (0.045) 9.715 (0.107) 31.449 (0.199)
Canonical (not in K) 0.095 (0.007) 1.313 (0.023) 12.659 (0.080)
Reduced (in K) 0.130 (0.012) 0.970 (0.041) 9.390 (0.084)
Reduced (not in K) 0.114 (0.009) 0.938 (0.024) 9.437 (0.094)

The loss of residual d.f. in the paired-samples design warrants some fur-
ther discussion. In the case where both observations in a pair are zero, the
corresponding fitted values would obviously be zero (i.e., the coefficient for the
blocking term for this pair in a log-link model would approach negative infinity).
Neither observation would provide any residual d.f., which is not considered by
the canonical definition. Another example involves pairs of control/treatment
samples where the treatment sample has a count of zero in all pairs. In this
scenario, the coefficient for the treatment effect would approach negative infin-
ity, such that all treatment samples would have fitted values of zero. However,
the coefficients for the pair-specific blocking terms would still be free to vary to
fit the control sample in each pair. This means that there are no residual d.f.
for dispersion estimation, regardless of the number of pairs. Both situations are
handled properly by the reduced definition of the residual d.f., as demonstrated
above.

6 Discussion

This article has shown that the standard formulation for the residual d.f. in a
linear model is not correct when NB GLMs are used to model RNA-seq read
count data and fitted values of zero are present. The incorrect formulation
will result in underestimation of the QL dispersion and potential loss of type
I error control. Such problems can be avoided by using a refined definition for
the residual d.f. that accounts for the presence of zeroes. The new reduced
d.f. formula restores error control in the QL framework for simulated count
data. Similar behaviour is observed in linear models for log-CPMs and in a DE
analysis of a real RNA-seq dataset. While this work focuses on RNA-seq data,
similar conclusions can be drawn for analyses of read counts from other genomic
technologies such as ChIP-seq (Lun and Smyth, 2016) or Hi-C (Lun and Smyth,
2015).
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The results presented here have much wider implications for the application
of GLMs in fields other than genomics and genetics. The reduced d.f. formula
derived here will be a more appropriate definition of the residual d.f. for any
GLM when the fitted values are non-negative but exactly zero fitted values are
possible. This scenario can arise, for example, when conducting goodness of fit
tests for Poisson or multinomial GLMs. The reduced d.f. will be appropriate
for any count-based GLM when a quasi-dispersion parameter or parameters in
the variance function need to be estimated (Wedderburn, 1974). Exactly zero
fitted values can also arise when using Tweedie GLMs to model insurance claims
(Smyth and Jørgensen, 2002) or rainfall data (Dunn and Smyth, 2005).

The reduced d.f. method described in this article has been implemented in
the glmQLFit function of the edgeR package, available from the open-source
Bioconductor project.
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