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Abstract

Optimization means finding that argument which minimizes or maximizes a given
function such as a likelihood function or a sum of squares. Many optimization al-
gorithms are derived from algorithms that solve the nonlinear equations defined
by setting the derivative of the objective function equal to zero. This article dis-
cusses a number of methods for unconstrained optimization, including bisection and
golden search in the univariate case and Newton’s method and quasi-Newton algo-
rithms in the multivariate case. Applications to maximum likelihood estimation,
Fisher’s method of scoring, nonlinear regression, and generalized linear models are
described. Restricted step and line search modifications are discussed for prevent-
ing divergence of Newton-type algorithms. A number of derivative-free methods
are discussed, including the Nelder–Mead simplex method, methods with numeric
derivatives, conjugate methods, and the EM algorithm.
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1 Introduction

Optimization means finding that value of x which maximizes or minimizes a given func-
tion f(x). The idea of optimization goes to the heart of statistical methodology because
statistical inference often involves optimizing an appropriate statistical objective func-
tion. Examples include least squares, maximum likelihood or Bayesian posterior mode
calculations.

A closely related problem is that of solving a nonlinear equation,

g(x) = 0
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for x, where g is a possibly multivariate function. Many algorithms for minimizing f(x)
are in fact derived from algorithms for solving g = ∂f/∂x = 0, where ∂f/∂x is the
vector of derivatives of f with respect to the components of x.

Except in linear cases, optimization and equation solving usually proceed by iteration.
Starting from an approximate trial solution, a useful algorithm will gradually refine
the working estimate until a predetermined level of precision has been reached. If the
functions are smooth, a good algorithm can be expected to converge to a solution when
given a sufficiently good starting value.

A good starting value is one of the keys to success. In general, finding a starting
value requires heuristics and an analysis of the problem. One strategy for fitting complex
statistical models, by maximum likelihood or otherwise, is to progress from the simple to
the complex in stages. Fit a series of models of increasing complexity, using the simpler
model as a starting value for the more complicated model in each case. Maximum
likelihood iterations can often be initialized by using a less efficient moment estimator.
In some special cases, such as generalized linear models, it is possible to use the data
themselves as starting values for the fitted values.

An extremum (maximum or minimum) of f can be either global or local. A local
minimum, for example, is the minimum of f in a neighborhood containing the value,
whereas the global minimum is the minimum value of f over its whole range (Figure 1).
Generally it is the global extremum that we want. A maximum likelihood estimator, for
example, is by definition the global maximum of the likelihood. Unfortunately, distin-
guishing local extrema from the global extremum is not an easy task. One heuristic is
to start the iteration from several widely varying starting points, and to take the most
extreme (if they are not equal). If necessary, a large number of starting values can be
randomly generated. Another heuristic is to perturb a local extremum slightly to check
that the algorithm returns to it. Two relatively recent types of algorithms, simulated
annealing and genetic algorithms, are often used successfully on problems where there
are a large number of closely competing local extrema. Simulated annealing handles
multiple minima by introducing a stochastic element into the interaction, which allows
it to escape from local extrema by temporarily increasing the objective function. Genetic
algorithms handle multiple minima by remembering at each iteration a set of candidate
parameter estimates instead of just one.

This article discusses unconstrained optimization. Sometimes, however, x must sat-
isfy one or more constraints. For example, a commonly occuring situation is one in which
one or more of the components of x being known a priori to be positive. In some cases
the constraints may be removed by a suitable transformation. For example, a strictly
positive parameter may be converted to an unconstrained scale by a log transformation.
Alternatively, constraints may be handled by the use of Lagrange multipliers.

One must choose between algorithms which use derivatives and those which do not.
In general, methods which use derivatives are more powerful. However, the increase in
speed does not always outweigh the extra overheads in computing the derivatives. Even
when derivatives do increase computational efficiency, it may still be inconvenient to
program them.

If first and second derivatives of f can be computed, then the well-known Newton’s
method is simple and works well. It is crucially important, though, to check the function
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Figure 1: The function f(x) has a local minimum at x2 and a global minimum at x1.
The points A = [a, f(a)], B = [b, f(b)], and C = [c, f(c)] bracket the global minimum.
The next point tried by a golden section search would be D.

value f(x) at each iteration, and to implement some sort of backtracking strategy, to pre-
vent the Newton iteration from diverging to distant parts of the parameter space from a
poor starting value. In many common statistical applications, Fisher’s method of scoring
is a convenient and effective approximation to Newton-Raphson. If second derivatives
are not available, then quasi-Newton methods can be recommended. General-purpose
quasi-Newton algorithms build up a working approximation to the second-derivative ma-
trix from successive values of the first derivative. If computer memory is very critical,
then conjugate gradient methods make the same assumptions as quasi-Newton meth-
ods but require only order N storage [1, Section 10.6]. If even first derivatives are not
available, the Nelder–Mead Simplex method is compact and reasonably robust. How-
ever, the slightly more complex direction-set methods or Newton methods with finite
difference approximations to the derivatives should minimize most smooth differentiable
functions, with fewer function evaluations. Whilst all the above comments apply gener-
ally, the one-dimensional problem is something of a special case. In one dimension, once
one can provide an interval which contains the solution, there exist efficient “low-tech”
algorithms robust enough to take on all problems.

Algorithms are also distinguished by the amount of memory they consume. Storage
requirements are typically of order N or order N2, where N is the dimension of x. In
many statistical applications, N is not usually so large that storage becomes an issue.

A practical introduction to root finding and optimization is given in Chapters 9,
10, and 15 (Sections 15.5 and 15.7) of Numerical Recipes [1]. More specialist texts are
Dennis & Schnabel [2], Fletcher [3], Gill et al.[4], Nocedal & Wright [5] and Lange [6].
A classic but technical text on solving nonlinear equations is Ortega & Rheinboldt [7].
A survey of available software is given by Moré & Wright [8].
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2 One Dimension

The case where x is one-dimensional is qualitatively simpler than the multidimensional
case. This is because a solution can be trapped between bracketing values, which are
gradually brought together. A root of g(x) is bracketed in the interval (a, b) if g(a)
and g(b) have opposite signs. A minimum of f(x) is bracketed by a triplet of values,
a < b < c, if f(b) is less than either of f(a) or f(c).

The simplest and most robust method for finding a root in a bracketing interval is
bisection. That is, we evaluate the function g at the midpoint of (a, b) and examine
its sign. The midpoint then replaces whichever end point has the same sign. After k
iterations, the root is known to lie in an interval of length (b− a)/2k.

The equivalent method for function minimization is the golden section search. Given
a bracketing triplet of points, the next point to be tried is that which is a fraction 0.38197
of the way from the middle point of the triplet to the farther end point (Figure 1). One
then drops whichever of the end points is farthest from the new minimum. The strange
choice of step size ensures that at each iteration the middle point is always the same
fraction of the way from one end point to the other (the so-called golden ratio). After k
iterations, the minimum is bracketed in an interval of length (c− a)0.61803k.

Bisection and golden section search are linear methods, in that the amount of work
required increases linearly with the number of significant figures required for x. There
are a number of other methods, such as the secant method, the method of false position,
Muller’s method, and Ridder’s method, which are capable of superlinear convergence,
wherein the number of significant figures liberated by a given amount of computation
increases as the algorithm converges. The basic idea is that g should be roughly linear
in the vicinity of a root. These methods interpolate a line or a quadratic polynomial
through two or three previous points, and use the root of the polynomial as the next
iterate. They therefore converge more rapidly than bisection or golden search when the
function g is smooth, but can converge slowly when g is not well approximated by a
low-order polynomial. They also require modification if they are not to risk throwing
the iteration outside the bracketing interval known to contain the root.

It is an advantage to use one of the higher-order interpolating methods when the
function g is nearly linear, but to fall back on the bisection or golden search methods
when necessary. In that way a rate of convergence at least equal to that of the bisec-
tion or golden section methods can be guaranteed, but higher-order convergence can be
enjoyed when it is possible. Brent [9, 1] has published methods which do the necessary
bookkeeping to achieve this, and which can be generally recommended for root finding
or minimizing in one dimension. Brent’s algorithms do not require the derivatives of f or
g to be supplied. However, the method for minimizing a function can be easily modified
to make use of the derivative when it is available [1].

3 Newton’s Method

The most celebrated of all methods for solving a nonlinear equation is Newton’s method,
also called Newton–Raphson. Newton’s method is based on the idea of approximating g
with its linear Taylor expansion about a working value xk. Let G(x) be the matrix of
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Figure 2: Newton’s method converges quadratically from the starting value x0.

partial derivatives of g(x) with respect to x. Using the root of the linear expansion as
the new approximation gives

xk+1 = xk −G(xk)−1g(xk).

The same algorithm arises for minimizing f(x) by approximating f with its quadratic
Taylor series expansion about xk. In the minimization case, g(x) is the derivative vector
of f(x) with respect to x (also called the gradient matrix ) and the second derivative
matrix G(x) is symmetric. Beware, though, that Newton’s method as it stands will
converge to a maximum just as easily as to a minimum.

If f is a log likelihood function, then g is the score vector and −G is the observed
information matrix. Newton’s method for maximizing the likelihood is based on the
same quadratic expansion which underlies asymptotic maximum likelihood theory.

Newton’s method is powerful and simple to implement. It will converge to a fixed
point from any sufficiently close starting value. Moreover, once it starts to home in on a
root, the convergence is quadratic (Figure 2). This means that, if the error is ε, the error
after one more iteration is of order ε2. In other words, the number of significant places
eventually doubles with each iteration. However, its global convergence properties are
poor. If xk is unlucky enough to occur near a turning point of g, then the method can
easily explode, sending the next estimate far out into the parameter space (Figure 3).
In fact, the set of values for which Newton’s method does and does not converge can
produce a fractal pattern [1].

The problems with Newton’s method are: (i) an inability to distinguish maxima
from minima; and (ii) poor global convergence properties. Both problems can be solved
effectively through a restricted step suboptimization [3]. Suppose we want to minimize
f(x). A condition for a minimum is that G(x) be positive definite. We therefore add a
diagonal matrix to G to ensure that it is positive definite:

xk+1 = xk − [G(xk) + λkI]
−1g(xk).

It is always possible to choose λk sufficiently large so that f(xk+1) < f(xk). A simple
algorithm then is to choose λk just large enough to ensure a descent step. As the
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Figure 3: Newton’s method diverges from the starting value x0.

iteration converges to a minimum, λk can be decreased towards zero so that the algorithm
enjoys superlinear convergence. This is the algorithm of choice when derivatives of f are
available.

Solving g(x) = 0, when g is not the gradient of some objective function f , is slightly
more difficult. One can manufacture a stand-in objective function by defining

f(x) = g(x)′g(x).

Then the root of g occurs at a minimum of f . Note, however, that g is not the derivative
of f , so that the above restricted step strategy is not available. In this case we can replace
the Newton step with the line search strategy,

xk+1 = xk − αkG(xk)−1g(xk),

where 0 < αk < 1. It is always possible to choose αk sufficiently small that f(xk+1) <
f(xk). The line search idea is to implement a one-dimensional suboptimization at each
step, minimizing f(xk+1) approximately with respect to αk.

Both the restricted step and the line search algorithms have global convergence prop-
erties. They can be guaranteed to find a local minimum of f and a root of g if such
exist subject only to some standard regularity conditions such as differentiability.

4 Quasi-Newton Methods

One of the drawbacks of Newton’s method is that it requires the analytic derivative G
at each iteration. This is a problem if the derivative is very expensive or difficult to
compute. In such cases it may be convenient to iterate according to

xk+1 = xk −A−1k g(xk),

where Ak is an easily computed approximation to G(xk). For example, in one dimension,
the secant method approximates the derivative with the difference quotient

ak =
g(xk)− g(xk−1)

xk − xk−1
.
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Such an iteration is called a quasi-Newton method. If Ak is positive definite, as it usually
is, an alternative name is variable metric method.

One positive advantage to using an approximation in place of G is that Ak can be
chosen to be positive definite, ensuring that the step will not be attracted to a maximum
of f when one wants a minimum. Another advantage is that A−1k g(xk) is a descent
direction from xk, allowing the use of line searches.

The best known quasi-Newton method in statistical contexts is Fisher’s method of
scoring, which is treated in more detail below. Among general purpose quasi-Newton
algorithms, the best is probably the Broydon–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm. BFGS builds upon the earlier and similar Davidon–Fletcher–Powell algorithm.
BFGS starts with a positive-definite matrix approximation to G(x0), usually the iden-
tity matrix. At each iteration it makes a minimalist (rank two) modification to A−1k to
gradually approximate G(xk)−1. Both DFP and BFGS are robust algorithms showing
superlinear convergence.

Statisticians might fall into the trap of thinking that the final approximation A−1k is a
good approximation to G−1(xk) at the final estimate. Since Ak is chosen to approximate
G(xk) only in the directions needed for the Newton step, it is useless for the purpose of
providing standard errors for the final estimates.

5 Fisher’s Method of Scoring

Of frequent interest to statisticians is the case where f(x) is a log likelihood function
and x is the vector of unknown parameters. Then g is the score vector and −G is the
observed information matrix. For many models (based on exponential families the Fisher
information, I(x) = E[−G(x)], is much simpler in form than −G(x) itself. Furthermore,
since I(x) is the covariance matrix of g(x), it has to be positive definite for any parameter
value x for which the statistical model is not degenerate. The quasi-Newton method that
replaces −G(x) with I(x) is known as Fisher’s method of scoring [10, Section 5g]. Fisher
scoring is linearly convergent, at a rate which depends on the relative difference between
observed and expected information [11].

Consider the special case of nonlinear least squares, in which context Fisher scoring
has a very long history and is known as the Gauss–Newton algorithm. The objective
function is

f(β) =
n∑

i=1

[yi − µ(ti,β)]2,

where the yi are observations and µ is a general function of covariate vectors ti and
the vector of unknown parameters β. Write y for the vector of yi, µ for the vector of
µ(ti,β), and µ̇ for the derivative matrix of µ with respect to β. The Fisher scoring
iteration becomes

βk+1 = βk +
(
µ̇′µ̇

)−1
µ̇′(y − µ),

where all terms on the right-hand size are evaluated at βk. The updated estimate
is obtained by adding to βk the coefficients from the multiple linear regression of the
residuals y−µ on the derivative matrix µ. Gauss–Newton therefore solves the nonlinear
least squares problem by way of a series of linear regressions.
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The Gauss–Newton algorithm can be accelerated considerably in the special case
that some of the elements of β appear linearly in µ. For example, if the expected value
is a sum of two exponential functions

µ(ti;β) = β1 exp(−β3ti) + β2 exp(−β4ti),

then the amplitudes β1 and β2 are linear parameters. In such cases, the Gauss–Newton
iteration can be restricted to the nonlinear parameters, β3 and β4. This idea is known
as separable least squares [12, Section 14.7]. Smyth [11] discusses the same principle in
the context of maximum likelihood estimation.

Perhaps the most important application of Fisher scoring is to generalized linear
models (GLMs). GLMs extend the idea of nonlinear regression to models with nonnormal
error distributions, including logistic regression and Poisson regression as special cases.
GLMs assume that yi is distributed according to a probability density or mass function
of the form

p(y; θi, σ
2) = a(y, σ2) exp

{
1

σ2
[yθi − b(θi)]

}
for some functions b and a (a curved exponential family). We find that E(yi) = µi = ḃ(θi)
and var(yi) = σ2v(µi), where v(µi) = b̈(θi). Here ḃ and b̈ denote the first and second
derivatives of b. If the mean µi of yi is as given above for the nonlinear least squares, then
the Fisher scoring iteration for β is a slight modification of the Gauss–Newton iteration:

βk+1 = βk +
(
µ̇′V−1µ̇

)−1
µ̇′V−1(y − µ)

where V is the diagonal matrix of the v(µi). The update for β is still obtained from a
linear regression of the residuals on µ̇, but now the observations are weighted inversely
according to their variances.

Classical GLMs assume a link-linear model of the form

h(µi) = x′iβ

for some link function h. In that case the Fisher scoring update can be reorganized as

βk+1 =
(
X′WX

)−1
X′Wz,

where z is a working vector with components zi = ḣ(µi)(yi − µi) + h(µi) and W is a
diagonal matrix of working weights 1/[ḣ(µi)

2v(µi)]. The updated β is obtained from
weighted linear regression of the working vector z on X. Since X remains the same
throughout the iteration, but the working weights change, this iteration is known as
iteratively reweighted least squares (IRLS).

When the observations yi follow an exponential family distribution, observed and
expected information coincide, so that Fisher scoring is the same as Newton’s method.
For GLMs this is so if h is the canonical link. We can conclude from the GLM IRLS
algorithm will converge quadratically for GLMs with a canonical link, for example for
logistic regression and Poisson loglinear models, but will converge linearly for other link
functions, for example for binomial regression with a probit link. In practice, rapid linear
regression is difficult to distinguish from quadratic convergence.
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6 Nonderivative Methods

The Nelder–Mead downhill simplex algorithm is a popular derivative-free optimization
method. It is based on the idea of function comparisons amongst a simplex of N + 1
points. Depending on the function values, the simplex is reflected or shrunk away from
the maximum point. Although there are no theoretical results on the convergence of the
algorithm, it works very well on a range of practical problems. It is a good choice if the
function to be minimized is not differentiable, or when a once-off solution with minimum
programming effort is required.

If one is prepared to use a more complex software program, and if the function to be
optimized is smoothly differentiable, then the best performing methods for optimization
without derivatives are quasi-Newton methods with difference approximations for the
gradient vector. These programs require only the objective function as input, and com-
pute difference approximations for the derivatives internally. Note that this is different
from computing numerical derivatives and inputting them as derivatives to a program
designed to accept analytic derivatives. Such a strategy is unlikely to be successful, as
the numerical derivatives are unlikely to show the assumed analytic behavior.

Close competitors to the finite-difference methods are direction set methods. These
methods perform one-dimensional line searches in a series of directions which are chosen
to be approximately conjugate or, in other words, orthogonal with respect to the second
derivative matrix. An excellent implementation is given by Brent [9].

7 EM Algorithm

The EM algorithm is not an optimization method in its own right, but rather a statistical
method of making optimization easier. The idea is the possibility that the log likelihood
`(y;θ) might be easier to maximize if there were additional observations or information.
Let z be the completed data, and let `(z;θ) be the log likelihood for z. Maximizing the
incomplete likelihood `(y;θ) is equivalent to maximizing the conditional expectation of
the complete likelihood given y, E[`(z;θ)|y]. In most cases, the EM is applied when the
complete likelihood can be maximized in one step. However, the conditional expectation
changes with the updated estimate of θ. So the optimization proceeds by alternate steps
of expectation and maximization — hence the name “EM”.

The EM algorithm is linearly convergent, at a rate that depends on the proportion
of observed to unobserved Fisher information. Let ρ be the fraction of the Fisher in-
formation for a particular parameter in the complete log likelihood `(z;β) which is not
actually observed. Then the error in the estimate for that parameter after each iteration
is εk+1 ≈ ρεk. The proportion ρ can in applications be very close, or even equal, to one
for some parameters, so that convergence can be very slow. On the other hand, the EM
algorithm normally converges even from poor starting values. The iteration can often
be speeded up by Aitkin acceleration, which attempts to convert linear convergence into
quadratic convergence [1, p. 92].
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8 Software

Optimization software is included in the commercial subroutine libraries IMSL and NAG,
and in many statistical programs such as SAS, R, S-PLUS, MATLAB and Gauss. Pub-
licly available software can be obtained by searching the NETLIB online library at
http://www.netlib.org. The guides and software provided by the Optimization Cen-
ter at Northwestern University at http://optimization.eecs.northwestern.edu are
also worth considering. Less elaborate programs suitable for user modification can be
found in Numerical Recipes [1].
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