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Abstract

Modification’s of Prony’s classical technique for estimating rate constants in
exponential fitting problems have many contemporary applications. Here the
consistency of Prony’s method and of related algorithms based on maximum
likelihood is discussed as the number of observations n → ∞ by considering
the simplest possible models for fitting sums of exponentials to observed data.
Two sampling regimes are relevant, corresponding to transient problems and
problems of frequency estimation; and these are associated with rather different
kinds of behaviour. The general pattern is that the stronger results are obtained
for the frequency estimation problem. However, the algorithms considered are
all scaling dependent and consistency is not automatic. A new feature emerges
which is the importance of an appropriate choice of scale in order to ensure
consistency of the estimates in certain cases. The tentative conclusion is that
algorithms referred to as ORA (Objective function Reweighting Algorithm) are
superior to their exact maximum likelihood counterparts referred to as GRA
(Gradient condition Reweighting Algorithm), especially in the frequency esti-
mation problem. This conclusion does not extend to fitting other families of
functions such as rational functions.

1 Introduction

The basic problem considered in this paper is the estimation of the parameter vector
β ∈ Rp in fitting to observations yi, i = 1, 2, . . . , n by models of the form

yi =
p∑

k=1

αkφk(βk, ti) + εi (1)
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where the random variables εi, i = 1, 2, . . . , n are assumed independent with mean zero
and variance σ2, and where the further assumption of normality is made to simplify
subsequent calculations. Here φk(βk, t) is given either by

• Model 1: φk(βk, t) = e−βkt, k = 1, 2, . . . , p, where βk is assumed to have positive
real part, and if its imaginary part is nonzero then its complement also occurs
in (1), or

• Model 2: φk(βk, t) = cos(βkt + ωk), k = 1, 2, . . . , p, where the βk, and ωk are
real.

It is assumed that the observation points ti are equispaced (so that ti = t1 + (i− 1)h).
However, it is necessary to distinguish between the sampling strategies appropriate in
the two cases. In the first the condition Rl(βk) > 0 ensures that the signal is transient
so that measurements made for large t contain no information. Here we can assume
that all observations are made in a fixed interval which can be chosen to be 0 ≤ t ≤ 1,
and in this case we have t1 = 0 and h = 1/(n− 1). The importance of this point was
first noted by Malinvaud [3]. In contrast, in the second case the signal is persistent
so that observations made for arbitrarily large time contain information. Here it is
appropriate to choose the scale of t so that h = 1. Also note that estimation of the
αi, i = 1, . . . , p is not considered here for either model (but see [6], for example).

The restriction to equispaced data points is the basis for the common element in
the algorithmic approaches to these two different classes of estimation problem because
both models then satisfy difference equations with constant coefficients. In the first
problem, where φk(βk, t) = e−βkt, there exist real coefficients ci(β), i = 1, 2, . . . , p+ 1
such that

p+1∑
j=1

cjφk(βk, ti+j−1) = 0, i = 1, 2 . . . , n− p, k = 1, 2 . . . , p. (2)

Also, given c, β is given by

βi = −1

h
log(λi) (3)

where λi, i = 1, 2, . . . , p are the roots of the equation

p+1∑
i=1

ciλ
i−1 = 0. (4)

The idea of reparametrizing the problem in terms of the recurrence parameters ci of
the difference equation (2) goes back to Prony [9]. This is not the only possibility of
interest, and one important alternative [7], [8] proves to be the difference parameters,
di, defined by

p+1∑
j=1

djh
−(p−j+1)∆(p−j+1)φk(βk, ti) = 0, i = 1, 2, . . . , n− p, k = 1, 2, . . . , p (5)

where ∆ is the usual forward difference operator.
The frequency estimation problem, when φk(βk, t) = cos(βkt + ωk), is slightly

different in that the assumed model really is a linear combination of 2p complex
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exponential terms, and the condition that the roots be pure imaginary means that (4)
must factorize in the form

η0

p∏
m=1

(λ2 − (2− η2m)λ+ 1), (6)

and this implies that ck = c2p+2−k, k = 1, 2, . . . , 2p + 1, and that (6) has roots of the
form λk = e±iβk where 2− η2k = 2 cos(βk). The corresponding difference form is

η0

 p∏
j=1

(δ2 + η2j )E

φk(βk, ti) = 0, i = 1, 2, . . . , n− 2p, k = 1, 2, . . . , p (7)

where δ2 is the second central difference operator and E is the forward shift operator.
Prony’s method in its modern guise, see [2], is a naive application of least squares

to estimate c. Let

rk =
p+1∑
i=1

ciyk+i−1, k = 1, 2, . . . , n− p. (8)

Introducing matrices XT
c : Rn → Rn−p, and Yc : Rp+1 → Rn−p where

(XT
c )ij = cj−i+1, j = 1, . . . , i+ p,= 0, otherwise (9)

(Yc)ij = yi+j−1, j = 1, 2, . . . , p+ 1, i = 1, 2, . . . , n− p, (10)

then (8) can be written
r = XT

c y = Ycc. (11)

and the least squares problem is to minimize rTr. However, as r is homogeneous in
the components of c, it is necessary to impose a scale - say

ψ(c) =
1

2
. (12)

Typical choices of scale include ψ(c) = 1
2
cTc, and ψ(c) = sTc for some s prescribed.

Prony’s original choice was s = (1, 0, . . . , 0)T . With this notation the estimation
problem becomes

min
c,ψ(c)=1/2

rTr, (13)

and the corresponding necessary conditions give the estimating equation

Y T
c Ycc = λ∇ψ(c)T (14)

where λ is the Lagrange multiplier associated with the constraint (13).
Remark 1.1 There are equivalent definitions for Xd, and Yd in the difference form for

the basic recurrence. Note that X considered as an operator on y → r is independent
of the parametrization except for the choice of scale because it is determined by the
condition (2) that 0 = XTE{y}. For the difference formulation Yd has the components

(Yd)ij = h−p+j−1∆p−j+1yi, i = 1, 2, . . . , n− p , j = 1, 2, . . . , p+ 1. (15)

In section 2 of this paper we summarise results that show that the conventional
Prony’s method does not give consistent estimates of the true parameter values β∗
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for model 1 for any choice of scale and that, for model 2, consistent estimates of β∗

can be obtained for one form only of the constraint ψ(c). In section 3 the problem
with Prony’s method is diagnosed as an uncritical use of least squares. Modifying
the sum of squares turns the problem into a maximum likelihood one but also makes
it nonlinear. Two approaches to its solution are considered, the Gradient condition
Reweighting Algorithm (GRA) and the Objective function Reweighting Algorithm
(ORA). In section 4 it is shown that, for the difference formulation of the modified
Prony’s method, (5), and for a simple model with one exponential, the ORA algorithm
is consistent provided the coefficients of the difference equation satisfy the constraint
ψ(d) = 1

2
d21 = 1. Section (5) considers the recurrence form parametrization of the

modified Prony’s method for estimating the exponential parameter in the same simple
model and gives the form of the scaling of c that provides a consistent parameter
estimate for the ORA algorithm. The final section of the paper outlines a study of
the performance of both the GRA and ORA in numerical experiments with a simple
model of the second type. Here the scaling does not prove to be as important.

2 Consistency of Prony’s Method

We ask how well does β̂ computed from ĉ, the solution to (14), approximate the true
parameter values β∗ for the particular model observed when the amount of data is
large. The standard tool for answering this consistency question is the law of large
numbers. We need here the form used in Osborne and Smyth [7] (it can be found, for
example, in Stout [13] where precise conditions are given). To cope with the sampling
of transient signals it is appropriate to introduce triangular arrays of random variables
corresponding to realisations of the basic experiment for an increasing sequence of
values of n. Let εnj, j = 1, 2, . . . , n, n = 1, 2, . . . form such an array of iid random
variables with E{ εnj} = ν, and V{ εnj} = σ2, and let uniformly bounded constants
γnj be given. Two cases occur:

1. If limn→∞ γnj → γ( j
n
) as n → ∞, where γ(t) is continuous on [0, 1], then with

probability one
1

n

n∑
j=1

γnjεnj → ν
∫ 1

0
γ(t)dt. (16)

2. If limn→∞ γnj → γj for each fixed j as n→∞ then with probability one

1

n

n∑
j=1

γnjεnj → ν lim
n→∞

1

n

n∑
i=1

γj. (17)

The first case (16) can be used to give a limiting problem for (14). Writing (1) as

yi = µ(β∗, ti) + εi, (18)

and noting that (10) gives

(Y T
c Yc)ij =

n−p∑
k=1

yk+i−1yk+j−1,
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then it follows almost surely that for the sampling regime appropriate for a transient
signal and for fixed p

1

n
Y T
c Yc =

∫ 1

0
µ(β∗, t)2dteeT + σ2I + o(1), n→∞, (19)

where eT = [1, 1, . . . , 1]. Note that

• the limiting contribution of the stochastic component (which here corresponds
to the variance σ2) is of the same order of magnitude as the contribution from
the mean µ, and

• the limiting contribution from the mean is the integral term which gives almost
no information on β∗.

The inconsistency of Prony’s method for this sampling regime is an immediate
consequence of (19). It follows because the higher order contributions from the mean
are truncation error terms in the estimate of the integral in (19) by

∑n−p
k=1 µk+i−1µk+j−1.

These tend to zero like O(n−1) while both the terms linear in the εk+i−1 and the
terms of the form εk−i+1εk−j+1, i 6= j tend to zero like n−1/2N where N is normally
distributed with finite variance. Thus the smaller stochastic terms have order in
probability O(n−1/2).

The second case (17) is used in carrying out the the corresponding calculation for
the frequency estimation problem in which h = 1. This gives the estimate valid almost
surely for large enough n:

1

n
Y T
c Yc =

1

2

p∑
i=1

α2
i


1 cos(β∗i ) . . . cos(2pβ∗i )

cos(−β∗i ) 1 . . . cos((2p− 1)β∗i )
...

...
. . .

...
cos(−2pβ∗i ) cos(−(2p− 1)β∗i ) . . . 1


+σ2I + o(1). (20)

Under the assumption of a correctly specified model, let c∗ be the eigenvector of the
mean contribution associated with the smallest (isolated) eigenvalue 0. It follows by
applying standard perturbation theory to (20) that

lim
n→∞

ĉ = c∗ (21)

provided the scale can be chosen so that the leading contribution from the stochastic
part (the σ2 term) can be cancelled in the necessary conditions (14) by the resulting
Lagrange multiplier term. This requires

σ2c∗ = lim
n→∞

λ̂

n
∇ψ(ĉ)T , (22)

and can be satisfied provided

ψ(c) =
1

2
cTc. (23)

However, it does not appear that (21) would hold in general for other choices of scale.
This specialised form of ψ(c) is that appropriate to the Pisarenko form [2] of the
algorithm, and leads to an eigenvalue problem for c. It follows directly from (20),
(22) that λ̂/n is a consistent estimator of σ2 when the scale is chosen by (12), (23).
Numerical results illustrating the above discussion are given in Tables 3 and 4 .
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3 Maximum likelihood formulation

The problems with Prony’s method stem from the uncritical use of least squares.
Essentially, forming the difference equation has correlated the errors. Using (11)
and noting that in the transient case the relation between c and β has a nontrivial
dependence on h

E{r(c(β∗))r(c(β∗))T} = XT
c E{ ε εT}Xc

= σ2XT
c Xc (24)

so that the correct least squares formulation is

min
c,ψ(c)=1/2

cTY T
c (XT

c Xc)
−1Ycc. (25)

This appears to have been considered first for normal errors by Day and Osborne
(Osborne [5]) who show that it corresponds to maximum likelihood estimation in this
case. Osborne [6] gives an iterative reweighting algorithm for finding a point at which
the necessary conditions for a minimum of (25) are satisfied (this will be referred
to as algorithm GRA standing for Gradient condition Reweighting Algorithm). A
simulation study is used to demonstrate that GRA can be very effective. Smyth in his
thesis [12], and Osborne and Smyth [7], [8] show the consistency, scale independence,
and asymptotic stability of the method under weak conditions on the probability
distribution of the errors for the first sampling regime (transient signals). GRA is
applied to the frequency estimation problem (the second sampling regime) in [3].

An alternative algorithm (ORA for Objective function Reweighting Algorithm) is
suggested in [5] and also in Bresler and Macovski [1]. Here the reweighting is applied
to the objective function (25) directly (that is in contrast to applying the reweighting
in the statement of the necessary conditions for a minimum of (25) which is the key
characteristic of GRA). Let

Mc(c) = XT
c Xc. (26)

Then a step of ORA takes the form

ck+1 = arg min
c,ψ(c)=1/2

cTY T
c Mc(ck)

−1Ycc. (27)

The necessary conditions for this minimization are

Y T
c Mc(ck)

−1Ycc = λ∇ψ(c)T (28)

where λ is the Lagrange multiplier associated with the scaling constraint. We will
assume that

∇ψ(c)T = Φcc (29)

where Φc is positive (semi) definite. This choice has the advantage that efficient
schemes based on inverse iteration are available to solve (28). For example, let

Bk = Y T
c M(ck)

−1Yc,
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then one possible iterative scheme computes at the i’th step

[Bk − λiΦc]ui+1 = Φcvi/s
T
i vi,

[Bk − λiΦc]vi+1 = Φcui+1,

λi+1 = λi −
sTi+1ui+1

sTi+1vi+1

where si defines a scale for the process and typically might be chosen as Φcvi. For any
sensible choice the process is cubically convergent. The iteration is terminated when
the change in λ relative to an estimate of σ2 is very small (values of order 10−(15−log(n))

have typically been used in our work).
It follows from (28) that the choice of scale is important in ORA. By comparison

with the strict form of the necessary conditions used in GRA, the necessary conditions
(28) omit the term obtained by differentiating Mc(c) in calculating the gradient of (25).
This leads to a simpler computational form for ORA. But it also means that ORA is
not a priori computing the right quantity as it omits terms which are certainly not
negligible.

In fact the convergence question for ORA is non trivial and will be discussed
in a subsequent paper. Although experience in the exponential case has proved very
satisfactory, ORA for rational fitting (for example the Michaelis-Menten equation [11])
is not acceptable. However, (28) is associated with a useful result. Let the scale be
chosen such that

cTΦcc = 1 . (30)

Then it follows from (11), (28) that

λ̂ = ĉTY T
c M

−1
c Ycĉ

= yTPy (31)

where P is the (n− p)× (n− p) projection matrix

P = XcM
−1
c XT

c .

Let (ĉ, λ̂) solve (28), and let β̂ be derived from ĉ by (3), (4). If β̂ is a consistent
estimate of the true value β∗ then λ̂/n is a consistent estimate of σ2. For the examples
discussed in following sections this is a simple consequence of the estimates made; but
its general validity is suggested strongly by the following argument. We show that if
the constant vector β̃ is close to β∗ (for example, equal to a member of a realisation of
a sequence of consistent estimators of β∗) then λ̃/n, where λ̃ is computed from (31),
is close in probability to σ2.

Let µ = µ(β∗) be the vector of mean values (so y = µ+ ε), and µ̃ = µ(β̃) so that

P µ̃ = 0.

Then

E{λ̃} = E{εTPε}+ µTPµ

= (n− p)σ2 + nKn‖β̃ − β∗‖2 (32)
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where the norm is the Euclidean norm, and

Kn = O(1), n→∞.

Because P is a projection the estimate for Kn follows on noting that

µTPµ = [µ− µ̃]TP [µ− µ̃]

≤ ‖µ− µ̃‖2

∼ n‖β∗ − β̃‖2
1∫
0
(dµ
ds

)2dt (33)

where

s =
1

‖β∗ − β̃‖
(β∗ − β̃).

To show that λ̃/n converges to its expectation in probability as n→∞ note that

V{λ̃} = E{(εTPε)2}+ 4µTPµσ2 − (n− p)2σ4, (34)

and (using normality explicitly)

E{(εTPε)2} = σ4
∑
i,j,k,l

PijPkl(δijδkl + δikδjl + δilδjk),

= σ4
{

(n− p)2 + 2‖P‖2F
}
, (35)

where ‖.‖F is the Frobenius norm. Now, as P is a symmetric projection

‖P‖2F = n− p.

It follows that

V{ λ̃
n
} = O

(
σ4

n

)
. (36)

An application of Chebyshev’s inequality with fixed δ > 0 gives

P{ λ̃− E{λ̃}
n

> δ} ≤ V{λ̃/n}
δ2

→ 0, n→∞. (37)

This verifies the convergence in probability and concludes the proof that λ̂/n is a
consistent estimator of σ2.

4 The consistency question for ORA (difference

parameters)

In this section it is assumed that ORA applied to the modified Prony objective function
in difference equation form converges. The consistency question for the resulting
ORA estimates is addressed by considering in detail the simplest possible problem
corresponding to

µ(t) = α1e
−β∗

1 t. (38)
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For this problem the question of consistency can be addressed by elementary means.
It is shown that there is a well defined scaling for which consistency can be demon-
strated. Extension of results to more complex models requires a different approach,
but preliminary calculations using the procedure employed by Osborne and Smyth [8]
to analyse GRA suggest that the result that consistency holds for ORA only if the
problem scale is chosen appropriately remains true. These predictions agree with the
results of numerical simulations.

The necessary conditions for the ORA modification of Prony’s method in its dif-
ference equation form solve the eigenvalue problem

Y T
d Md(dk)

−1Ydd = λΦdd.

For one exponential (8) takes the form

d1h
−1∆yi + d2yi = ri, i = 1, 2, . . . , n− 1 (39)

so that

XT
d =


−d1h−1 + d2 d1h

−1

−d1h−1 + d2 d1h
−1

...
...

...
...

...
· · · −d1h−1 + d2 d1h

−1

 (40)

Yd =


h−1∆y1 y1
h−1∆y2 y2

...
...

h−1∆yn−1 yn−1

 , (41)

and, setting τ = h−2d21 − h−1d1d2,

Md = XT
d Xd

=


2τ + d22 −τ
−τ 2τ + d22 −τ
...

...
...

...
...

...
· · · −τ 2τ + d22

 . (42)

The matrix Y T
d M

−1
d Yd evaluated at d(β∗) is critical in determining if β̂ → β∗ as

n→∞. To check this out we proceed as in the case of Prony’s method and compute
the limits as n→∞ of 1

n
Y T
d M

−1
d Yd. This separates into two parts:

1. the contribution of the mean term, and

2. the contributions of the stochastic terms arising from the error term in the model.

Writing out the matrix in detail gives

Y T
d M

−1
d Yd =

[
(D(µ+ ε))T

(E0(µ+ ε))T

]
M−1

d

[
D(µ+ ε) E0(µ+ ε)

]
(43)
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where E0 =
[
I 0

]
and D is the matrix representation of the operator h−1∆.The

contribution from the mean is given by

µTET
0 M

−1
d E0µ

[
h−2(eβ

∗
1h − 1)2 h−1(eβ

∗
1h − 1)

h−1(eβ
∗
1h − 1) 1

]
. (44)

Note that d(β∗)T + O(h) =
[

1 −β∗1
]T

+ O(h) is an eigenvector of (44) associated

with the eigenvalue 0. As the terms in the matrix braces are each O(1) as n → ∞,
the order of this term depends on the order of µTET

0 M
−1
d E0µ which is shown in the

appendix to be O(n). Thus

lim
n→∞

1

n
µTET

0 M
−1
d E0µ

[
h−2(eβ

∗
1h − 1)2 h−1(eβ

∗
1h − 1)

h−1(eβ
∗
1h − 1) 1

]
d(β∗) = 0.

The important expectation in the stochastic contribution comes from terms which
are quadratic in ε since terms such as µTDTM−1

d Dε have zero expectation. Let

T =

[
εTDTM−1

d D ε εTDTM−1
d E0 ε

εTET
0 M

−1
d D ε εTET

0 M
−1
d E0 ε

]
. (45)

Then it is shown in the appendix that

lim
n→∞

1

n
T =

[
σ2 0
0 0

]

where the convergence is convergence in probability.
This brings us to much the same point as that reached in discussing the use of

Prony’s method to estimate frequencies in section 2. Again we have that the mean
and stochastic components of the model contribute terms of similar magnitude. Thus,
although the mean term has the correct limiting form, d(β∗) can satisfy the limiting
estimating equation to leading order terms only if the scale can be chosen so that

Φd =

[
1 0
0 0

]
+ o(1) (46)

In particular, this is satisfied provided

ψ(d) =
1

2
d21. (47)

This scaling ensures that the difference equation (39) is necessarily non trivial. Choices
of scaling for d that do not satisfy (46) will give estimates of β which are inconsistent.

The above results are illustrated by a small simulation which is reported in Table
1. In this, GRA and ORA for the consistent scale (47) are compared with ORA for
the inconsistent scale ψ(d) = d21 + d22. Data is generated using

yi = exp(−4
i

n
) + εi, i = 1, 2, . . . , n

where εi ∼ N(0, 0.01). The first column indicates if the GRA or ORA procedure was
used, and in the latter case with which scaling. Estimates of β are obtained from
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100 simulated data sets and the table shows the means and standard deviations (in
brackets and below) of three quantities obtained from each data set. These are the
estimate of β, the number of iterations taken (iter), and an estimate s of the standard
deviation given by

s2 =

∑n
i=1(yi − µ(β̂, ti))

2

n− 2p
. (48)

This is used here for ORA rather than the formula based on (32), (36) in order to be
able to make a direct comparison with GRA. The use of σ = 0.1 is large enough to
make all methods work reasonably hard for the smaller values of n, and the inconsistent
case essentially cannot cope. Certainly the predictions of our theory are born out. The
interesting observation is that GRA and consistent ORA are strictly comparable in
performance, so that the relative simplicity of ORA is likely to make it the method
of choice. This comparability persists also for simulations we have carried out for two
exponentials, but here numerical difficulties which arise due to the illconditioning of
M for larger values of n become more evident.

5 The consistency question for ORA (recurrence

parameters)

The recurrence form does not lend itself easily to the same techniques that proved
successful for showing consistency for the difference form. The complication comes
from the property that in the limit as n → ∞ (h → 0) the components of c tend to
the coefficients of powers of E in (E − 1)p which are signed multiples of the binomial
coefficients and thus independent of β. This makes it necessary to examine higher
order terms. For this reason we study the equivalence between the two formulations
discussed in Remark (1.1) and derive the results for the recurrence form from those
derived for the difference form in the previous section. Let

Tc =

[
−h−1 1
h−1 0

]
, (49)

then, setting E1 =
[

0 I
]
,

Ycc = [ E0y E1y ]c,

= YcTcT
−1
c c,

= Ydd.

Thus
Yd = YcTc, d = T−1c c. (50)

Now, remembering that M is unchanged under the reparametrization, this permits
the necessary conditions (28) to be put in the form (Remark 1.1)

T Tc Y
T
c M

−1YcTcT
−1
c c = λT Tc ΦcTcT

−1
c c (51)
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Number of Algorithm β̂ iter s
data points and scale

GRA 4.0835 4.390 0.097
(1.0784) (1.197) (0.027)

n = 10 ORA 4.2241 3.300 0.098
d21 (1.1198) (0.870) (0.028)

ORA ** 11.90 **
d21 + d22 ** (7.31) **
GRA 4.0409 3.420 0.1010

(0.4230) (0.727) (0.0135)
n = 30 ORA 4.0885 2.420 0.1010

d21 (0.4319) (0.496) (0.0135)
ORA ** 14.00 **
d21 + d22 ** (7.15) **
GRA 4.0044 3.040 0.1003

(0.2360) (0.567) (0.0066)
n = 100 ORA 4.0181 2.0 0.1003

d21 (0.2375) (0.0) (0.0066)
ORA 6.0134 13.07 0.1219
d21 + d22 (0.6166) (2.79) (0.0127)
GRA 4.0236 2.490 0.0999

(0.1224) (0.577) (0.0037)
n = 300 ORA 4.0281 2.0 0.0999

d21 (0.1227) (0.0) (0.0037)
ORA 5.9229 12.62 0.1204
d21 + d22 (0.3204) (1.41) (0.0068)

Table 1: Simulation results for the model yi = exp(−4i/n) + εi, i = 1, . . . , n. Results
are given for the GRA and ORA with consistent and inconsistent scaling for the
difference parameters. ** means failure of the algorithm.
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Comparing with (50) shows that identical results are obtained in the two parametriza-
tions provided the scale transforms according to

Φd = T Tc ΦcTc. (52)

To see what this means consider the scale defined by

Φc =

[
ξ1

ξ2

]
, ξ1, ξ2 ≥ 0 (53)

Multiplying out gives

Φd = h−2
{[

ξ1 + ξ2 0
0 0

]
+O(h)

}
.

Comparing this with (46) shows that any nonzero scaling matrix of the form (53) is
consistent. Examples of consistent scalings include

ψ(c) = c21, c
2
1 + c22, and c22.

These would appear to include all cases of interest except the original Prony scaling
which is not of this form. Another example of an inconsistent scaling is given by

ψ(c) = (c1 + c2)
2.

For the example considered in the previous section, yi = exp(−4i/n) + εi, the
corresponding results in this case are given in Table 2. The results follow the same
pattern as before showing the same sharp distinction between consistent and incon-
sistent scalings. The results for the two cases ψ(d) = d21, and ψ(c) = c22 are identical
confirming (52).

6 The question of consistency in the frequency es-

timation case

The above calculations suggest that the effectiveness of ORA for the estimation of rate
constants associated with transient signals can be quite adequate provided the correct
choice of scale is made. However, the frequency case is associated with results of a
rather different kind in maximum likelihood calculations, and these suggest parallel
questions for ORA. First, the global maximum of the likelihood is known to give
O(n−3/2) accurate estimates of the frequency parameters, and this super convergence
result contrasts with the O(n−1/2) result usual in such calculations. The catch is
that the likelihood surface in its original parametrization has many local minima
(the number increasing with n) which are all within O(n−1) of the correct frequency
estimate, and that the corresponding amplitude estimates are inconsistent [10]. Second
[3], the re-parametrization in GRA does not save it from the difficulties caused by
multiple stationary points.

More elaborate calculations are involved if an attempt is made to analyse ORA in
the frequency case following our previous procedures as the simplest example already

13



Number of Algorithm β̂ iter s
data points and scale

ORA 4.2241 4.430 0.0978
c22 (1.1198) (1.103) (0.0275)

n = 10 ORA 3.9999 3.920 0.0977
c21 + c22 (1.0362) (1.061) (0.0275)
ORA ** 12.58 **

(c1 + c2)
2 ** (8.11) **

ORA 4.0885 3.190 .1010
c22 (0.4319) (0.563) (0.0135)

n = 30 ORA 4.0023 3.020 0.1010
c21 + c22 (0.4172) (0.681) (0.0135)
ORA ** 14.79 **

(c1 + c2)
2 ** (7.52) **

ORA 4.0181 2.570 .1003
c22 (0.2375) (0.497) (0.0066)

n = 100 ORA 3.9919 2.430 0.1003
c21 + c22 (0.2347) (0.498) (0.0066)
ORA 6.1642 13.87 0.1243

(c1 + c2)
2 (0.6517) (3.11) (0.0137)

ORA 4.0281 2.0 0.0999
c22 (0.1227) (0.0) (0.0037)

n = 300 ORA 4.0194 1.970 0.0999
c21 + c22 (0.1222) (0.300) (0.0037)
ORA 6.0564 13.29 0.1225

(c1 + c2)
2 (0.3361) (1.50) (0.0771)

Table 2: Simulation results for the model yi = exp(−4i/n) + εi, i = 1, . . . , n. Results
are given for the ORA with consistent and inconsistent scaling for the recurrence
parameters. ** means failure of the algorithm.
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involves two exponential terms. For this reason we have resorted to a numerical
approach. We consider the signal

µ(t) = cos(.01t+ 1),

and data is generated using

yi = µ(i) + εi, i = 1, 2, . . . , n

where, as before, εi ∼ N(0, .01). Again the data reported are the means and standard
deviations of the results of 100 replications for each of n = 10, 30, 100, 300, and follows
the same basic format as before, but the estimates are sorted in increasing value of
their imaginary part before averaging. Also, this time the results for Prony’s method
are quoted as well. The inconsistency of Prony’s method for other than the Pisarenko
scaling is clear, but the performance of the other methods is interesting. No special
assumptions were made about the Prony parameters so it was not assumed in advance
that the rate constants were pure imaginary. The calculations were started at the true
parameter values in each case, and this proves close enough to the actual computed es-
timates for GRA to avoid the convergence problems resulting from multiple stationary
points outlined above. Calculations have been carried out both for the recurrence and
difference form of ORA, but the results are very similar so that only the recurrence
results are reported. ORA encounters some trouble when n = 10, and it was necessary
to remove redundancy in parametrization by requiring that Imβ ∈ [−π, π]. When
more than 40 iterations occured in any of the experiments the computation is termi-
nated and the corresponding results are starred. Only the Prony results are given for
n = 300 as the errors in the ORA calculation of the rate constants proves to be in the
sixth decimal place. Also values of (λ̂/n)1/2 for the ORA and Prony calculations are
reported. These show a tendency to underestimate σ when the estimation procedure
is consistent. The results are given in Tables 3 and 4. This shows two very interesting
aspects of our calculations:

1. Here the choice of scale needed to ensure consistency for ORA is clearly much
less important in both the recurrence and difference forms. This could be com-
pared with the discussion of Prony’s method where nothing could be done in the
transient case, but there proved to be a consistent scaling in the frequency case.

2. The ORA results exhibit the same super convergence results as GRA.

One point which does not show up here could prove to be at least as important. Other
testing that has been carried out suggests that ORA appears much less sensitive than
does GRA to the choice of starting values for large n. The multiple stationary values
of GRA can be explained by noting that the gradient of the objective function (25)
has poles at the zero eigenvalues of XTX, and there are lots of these in the frequency
case. On the other hand, in ORA, forming the necessary conditions from the objective
function does not involve the difficult term (XTX)−1. This permits the small size of
the Xc to be more important in minimizing the quadratic form, providing a kind of
smoothing mechanism.
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Algorithm β̂1 β̂2 iter
√
λ̂/n

and scale
n = 10
GRA −0.1028− 0.2237i 0.0934 + 0.2237i 4.78

(0.2970) (0.2887) (1.1063)
Prony −0.2067− 0.3212i 0.1815 + 0.2270i 0.1515

c21 + c22 + c23 0.9804 0.3481 0.0639
ORA (rec) −0.1045− 0.1849i 0.1065 + 0.1849i 3.66 0.1011
c21 + c22 + c23 (0.2373) (0.2305) (0.9663) (0.0300)

Prony 0.8928− 1.2591i 0.8711 + 0.0967i 0.1402
c23 (1.7370) (0.9207) (0.0295)

ORA (rec) −0.0516− 0.2242i 0.0901 + 0.2242i 4.87 0.0800
c23 (0.2106) (0.2190) (1.0508) (0.0246)

Prony −0.0017− 1.9758i 0.2749 + 1.0019i 0.2010
(c1 + c2 + c3)

2 (1.1596) (1.9723) (0.0258)
ORA (rec) 0.0361− 1.5879i 0.2102 + 0.6454i 24.45 * 0.2040

(c1 + c2 + c3)
2 (1.1220) (1.8136) (11.005) (0.0714)

n = 30
GRA 0.0008− 0.0992i 0.0008 + 0.0992i 2.64

(0.0118) (0.0118) (0.523)
Prony −0.0489− 0.0980i 0.0426 + 0.0665i 0.0953

c21 + c22 + c23 (0.4252) (0.1628) (0.0164)
ORA (rec) 0.0006− 0.0994i 0.0006 + 0.0994i 2.37 0.0933
c21 + c22 + c23 (0.0117) (0.0117) (0.501) (0.0118)

Prony 1.4076− 2.5761i 0.5852 0.1471
c23 (1.5714) (1.3104) (0.0142)

ORA (rec) 0.0028− 0.0980i 0.0028 + 0.0980i 2.92 0.0933
c23 (0.0122) (0.0122) (0.393) (0.0018)

Prony −0.7064− 2.0001i −1.0246 + 1.12147i 0.6965
(c1 + c2 + c3)

2 (0.7537) (1.7296) (0.0162)
ORA (rec) 0.0271− 0.1174i −0.0271 + .1174i 5.42 0.1142

(c1 + c2 + c3)
2 (0.0105) (0.0105) (0.843) (0.0204)

Table 3: Simulation results for frequency estimation, n = 10 and n = 30. The true
values of β1 and β2 are ±.1i and the final column should estimate σ = .1. Prony’s
method is inconsistent except for the scaling c21 + c22 + c23. ORA is less sensitive to
scaling for this frequency problem. * implies that the algorithm failed.
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Algorithm β̂1 β̂2 iter
√
λ̂/n

and scale
n = 100

GRA 0.0000− 0.1000i 0.0000 + 0.1000i 2.08
(0.0007) (0.0007) (0.394)

Prony −0.0085− 0.0907i −0.0019 + 0.0907i 0.0989
c21 + c22 + c23 (0.0526) (0.0347) (0.0100)
ORA (rec) 0.0000− 0.1000i 0.0000 + 0.1000i 1.96 0.0980
c21 + c22 + c23 (0.0007) (0.0007) (0.197) (0.0066)

Prony 1.7969− 3.0788i 0.1172 0.1528
c23 (0.7838) (0.7427) (0.0081)

ORA (rec) 0.0000− 0.1000i 0.0000 + 0.1000i 2.37 0.0980
c23 (0.0007) (0.0007) (0.506) (0.0066)

Prony 0.0993− 1.7775i 0.0993 + 1.7775i 0.6866
(c1 + c2 + c3)

2 (0.1063) (0.1063) (0.0099)
ORA (rec) −0.0000− 0.1004i −0.0000 + 0.1004i 2.89 0.0984

(c1 + c2 + c3)
2 (0.0007) (0.0007) (0.315) (0.0067)

n = 300
Prony 0.0005− 0.0993i 0.0005 + 0.0993i 0.1001

c21 + c22 + c23 (0.0109) (0.0109) (0.0054)
Prony 1.6933− 3.1416i 0.0152 0.1545
c23 (0.2709) (0.0012) (0.0048)

Prony −0.1284− 1.7837i −0.1284 + 1.7837i 0.6943
(c1 + c2 + c3)

2 (0.0587) (0.0587) (0.0058)

Table 4: Simulation results for frequency estimation, n = 100 and n = 300. The true
values of β1 and β2 are ±.1i and the final column should estimate σ = .1. GRA and
ORA give correct answers for n = 300. Prony’s method is inconsistent except for the
scaling c21 + c22 + c23.
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7 Conclusion

The consistency of estimates given by the Prony, GRA, and ORA algorithms as n→∞
has been discussed in the context of the simplest possible applications. Not much can
be done for Prony in the transient case, but a distinguished choice of scale (correspond-
ing to Pisarenko’s method) gives consistency in the frequency estimation problem. In
the transient case ORA requires a particular choice of scale to be consistent for the dif-
ference parameters. But this permits us to deduce a useful family of consistent scales
for the recurrence parameters. Here GRA and ORA appear to be strictly comparable
methods. In an interesting contrast to the transient case, it appears to be much easier
for ORA to be consistent in the frequency estimation problem. But more importantly,
it appears to be much less sensitive to choice of starting value than does GRA while
still producing super convergent estimates of the frequency parameters. Thus ORA
would appear to be the superior method in this case.
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[9] R. Prony, Essai éxperimental et analytique: sur les lois de la dilatabilité de fluides
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8 Appendix

The first result to be shown here is that the term µTET
0 M

−1
d E0µ in equation (44) is

O(n) as n→∞. To do this we use the eigen decomposition of Md. We have

Mdvi = υivi (MV = VΥ)

where

υi = 4τ sin(
iπ

2n
)2 + d22, i = 1, 2, . . . , n− 1, (54)

(vi)j =

√
2

n
sin(

iπj

n
), j = 1, 2, . . . , n− 1, i = 1, 2, . . . , n− 1. (55)

It is known that υi − d22 = d21γii
2 where 1 < γi < π2 so that, in particular,

∑n−1
i=1

1
υi
<

2, ∀n. We will also need the singular value decomposition for D the matrix represen-
tation of the operation h−1∆. This is

Dui = λivi
(
DT = UΛV T

)
where

λi = 2h−1 sin(
iπ

2n
), i = 1, 2, . . . , n− 1, (56)

(ui)j =

√
2

n
cos(

iπ

n
(j − 1

2
)), j = 1, 2, . . . , n, i = 1, 2, . . . , (n− 1). (57)

We use the eigen decomposition to obtain

µTET
0 M

−1
d E0µ =

n−1∑
i=1

1

υi


n−1∑
j=1

√
2

n
sin(

iπj

n
)e

−β∗1 j
n


2

=
2

n

n−1∑
i=1

1

υi
I2i (58)

where

Ii =
n−1∑
j=1

sin(
iπj

n
)e

−β∗1 j
n

is essentially a decreasing function of i. As

Ik ≈ n
∫ 1

0
sin(kπt)e−β

∗
1 tdt = O(n)
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for small k, and
n−1∑
i=1

1

υi
= O(1) ∀n.

Thus it follows that
µTET

0 M
−1
d E0µ = O(n). (59)

The second result to be proved here is that the expectation of the stochastic matrix

T =

[
εTDTM−1

d Dε εTDTM−1
d E0ε

εTET
0 M

−1
d Dε εET

0 M
−1
d E0ε

]
=

[
T11 T12
T21 T22

]

tends to the limiting form

[
O(n) O(1)
O(1) O(1)

]
as n → ∞. To show this it is convenient

to define two extra variables as follows,

ε# = UT ε (60)

and
ε∗ = V TE0 ε, (61)

then ε#i , i = 1, 2, . . . , (n − 1), and ε∗i , i = 1, 2, . . . , (n − 1) are independent and
∼ N(0, σ2). To calculate the expectations we have:

1. E{T22}:

E{T22} = trace E{M−1d E0 ε ε
TET

0 },
= trace E{Υ−1 ε∗ ε∗T},

= σ2
n−1∑
i=1

1

υi
,

= O(1). (62)

2. E{T21}:

E{T21} = trace E{M−1d D ε εTET
0 },

= trace E{Υ−1Λ ε# ε∗T},

= σ2 2

n

n−1∑
i=1

λi
υi

n−1∑
j=1

sin(
iπj

n
) cos(

iπ

n
(j − 1

2
)),

=
−σ2

2n

n−1∑
i=1

λ2i
υi
,

= O(1). (63)

3. E{T11}

E{T11} = trace E
{

M−1d D ε εTDT
}
,

= trace E{Υ−1Λ ε# ε#TΛ},

= σ2
n−1∑
i=1

λ2i
υi
,

= O(n) (64)
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as it follows from (54), (56) that all the terms in the summation are O(1). It
also follows from section 3 that limn→∞

1
n
E{T11} must be σ2.

We can show the convergence as n→∞ of 1
n
T to its expectation readily. The pattern

of the argument is illustrated by T11.

T11 =
n−1∑
i=1

(ε#i )2
λ2i
υi

= E{T11}+
n−1∑
i=1

λ2i
υi

{
(ε#i )2 − σ2

}
→ n

(
E{T11}
n

+ o(1)

)
a.s., n→∞

by the strong law of large numbers (the second case (17) is relevant here).
The remaining stochastic terms become negligible in comparison with the mean

term as n→∞. We consider the term

Z = εTET
0 M

−1E0µ

= ε∗TΥ−1V TE0µ

=

√
2

n

n−1∑
i=1

1

υi
ε∗i Ii

(terms involving Dµ add nothing new). The law of large numbers doesn’t help here (
Z/n is a sum of terms of the form O( 1√

ni2
) ε∗i ); but the Chebyshev inequality permits

a simple estimate in probability. The relevant variance calculations give

V{Z} = V{ εTET
0 M

−1E0µ}
= E{µTET

0 VΥ−1 ε∗ ε∗TΥ−1V TE0µ},

= σ2
n−1∑
i=1

(
vTi E0µ

υi
)2,

= σ2O(n);

Then for δ > 0, fixed,

P{Z
n
> δ} ≤ V{Z/n}

δ2
→ 0, n→∞.
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