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Abstract

The problem of extracting sinusoid signals from noisy observations made at
equally spaced times is considered. Eigenanalysis methods, such as Pisarenko’s
method and the extended Prony method, find the eigenvector with minimum
eigenvalue of a suitably chosen matrix, and then obtain the complex sinusoids
as the roots of the polynomial which has the components of the eigenvector as
coefficients. For the sinusoids to be undamped, it is necessary that the roots lie
on the unit circle, and hence that the eigenvector be conjugate symmetric. It
is shown how this symmetry constraint can be incorporated into eigenanalysis
estimation methods in a routine way. The practical importance of the constraint
is investigated by Cramér-Rao variance bound calculations and by simulation.
Three data examples are included. The following conclusions are made: (i) The
symmetry constraint is straightforward to implement, and reduces the amount of
computation required. (iii) The relative reduction in variance of the constrained
over the unconstrained frequency estimators is arbitrarily large for frequencies
close together or near a multiple of π. However there are also frequency values
for which the symmetry constraint gives no reduction in variance at low noise-
to-signal ratios. (iv) The relative reduction in variance converges to zero for
large sample sizes. (v) The symmetry constraint increases the breakdown noise-
to-signal ratios above which the various methods fail to give useful results.

Keywords: Prony’s method; Pisarenko’s harmonic decomposition; sinusoid sig-
nals; complex exponentials; least squares; discrete spectra.

1 Introduction

Time series consist of observations recorded regularly over time which show ongoing
patterns or periodicities that need to be decoded. Time series are common in most
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areas of science and engineering, especially in areas such as geophysics, speech recogni-
tion and electronic signal processing. A traditional method of identifying periodicities
in time series data is to model the series yt as a sum of sinusoidal signals,

yt = µt + εt, (1)

t = 1, . . . , n, where

µt =
p∑

k=1

αk sin(ωkt+ φk) (2)

and where εt represents an error process with mean zero and constant variance. The
sum of sinusoids model is said to have a discrete spectra, as there are a finite number of
discrete frequencies ωk. The sinusoidal signals are sometimes called hidden periodicities
or harmonics.

Discrete spectra are usually generated by mechanisms that operate with high preci-
sion and regularity. Thus, light spectra produced by the motion of electrons between
prescribed energy levels in atoms are discrete. The frequency decomposition of a
tone produced by the human voice or a musical instrument is discrete because only
finitely many “modes” of vibration are possible in human vocal cords and the vibrat-
ing mechanism of the instrument. Problems involving the identification of discrete
frequencies arise in many areas such as laser signals, speech recognition, industrial
process control, communications, radio location of objects, seismic signal processing
and computer-assisted medical diagnosis.

For example, in speech recognition and speech synthesis, voice tones can be mod-
eled using a small number of resonant frequencies (formants) (Reddy, 1967; Schafer
and Rabiner 1969; Benade, 1990). Accurate identification of the frequencies and their
corresponding amplitudes allows vowels and other tones to be automatically distin-
guished and reproduced.

Less regular physical processes often produce time series with a smooth spectral
response, which behave as if there are many small contributions at infinitely many
frequencies (Priestley, 1981). Even in these situations there is often a discrete spectral
component, perhaps because of some characteristic of the measuring equipment. In
this case the interest in estimating the discrete component may be to remove it from
the series so that the remaining continuous spectra can be studied in isolation, a
process which is known as “complex demodulation”. In manufacturing process control,
identification of periodic behavior in a production process is often of interest as it may
signal a process which is responding to environment conditions and is therefore in an
out of control state.

This paper is concerned with the classic problem of extracting sinusoid signals
from observations made at equally spaced times, where the εt are uncorrelated errors
with mean zero and constant variance σ2. A nonlinear regression approach is taken
in which the αk, ωk and φk are viewed as fixed parameters to be estimated by least
squares or other appropriate criteria. The ratio of the amplitude to the error standard
deviation αk/σ represents the signal-to-noise ratio for the kth signal. In general, the
larger the signal-to-noise ratio, the easier it is to estimate the corresponding frequency
for a given number of observations.
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It is often convenient to represent (2) as a sum of complex exponentials,

µt =
2p∑
k=1

αk exp(iωkt) (3)

in which the frequencies ωk are real but the αk may be complex (Marple, 1987; Kay,
1988). This complex signal reduces to a real signal of the form (2) if the complex ex-
ponentials and corresponding coefficients occur in conjugate pairs. The fully complex
version of the frequency estimation problem has also been studied. In the complex ver-
sion the errors have imaginary parts which are uncorrelated with, and of equal variance
as, the real parts. The complex problem with n observations is essentially equivalent
to the corresponding real problem with 2n observations, and can be obtained from
it using an ideal Hilbert transform (James et al, 1994, Appendix A). Complex data
might also arise directly where a real signal has been subject to complex modulation
before being observed with error.

Both the real and complex frequency estimation problems have attracted enor-
mous attention in the statistical and signal processing literature. If the errors εt are
approximately normal, then maximum likelihood estimation of the frequencies results
in a nonlinear least squares problem. This particular problem though is not amenable
to standard nonlinear least squares methods because of the existence of many local
minima of the sum of squares (Rice and Rosenblatt, 1988; Smyth and Hawkins, 1997).
Standard methods such as Gauss-Newton are likely to converge to a local minima
rather than the global minimum unless exceptionally good starting values are sup-
plied. There are also difficulties with numerical stability and with convergence when
there are frequencies close together. For these reasons, frequency estimation is usually
undertaken by autoregressive methods or by eigenanalysis methods (Mackisack et al,
1994). In this paper we show, by combining three eigenanalysis algorithms of increas-
ing complexity, that convergence to the global likelihood maximum can be obtained
in virtually all cases without having to supply starting values, except when the noise
to signal ratio is extremely high. This essentially solves the starting value problem
for maximum likelihood estimation of frequencies which was described by Rice and
Rosenblatt (1988).

Most eigenanalysis methods of estimation are based on a parametrization which
was proposed in a, now classical, paper by Gaspard Riche, Baron de Prony (Prony,
1795). Gaspard Riche observed that a linear combination of exponential functions
satisfies a difference equation of the form

c1µt + . . .+ c2p+1µt+2p = 0 (4)

for all t, and hence derived a system of linear equations for interpolating a sum of p ex-
ponentials through 2p points. Modern eigenanalysis methods find c = (c1, . . . , c2p+1)

T

as the eigenvector with minimum eigenvalue of a suitably chosen matrix B, and then
find the frequencies as the angular positions of the roots of the polynomial

C(z) = c1 + c2z + . . .+ c2p+1z
2p

Best known is Pisarenko’s harmonic decomposition method (Kay and Marple, 1981)
for which B is an estimate of the “covariance matrix” of the yt (viewing the yt as a
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stationary process with mean zero). Other eigenanalysis methods have been proposed
by Osborne (1970, 1975) in which B is a function of c and the eigenproblem is solved
iteratively. Other methods can be expressed as eigenproblems, although they were
originally proposed in terms of quadratic minimizations. These include the extended
Prony method (Kay and Marple, 1981), the IQML method of Bresler and Macovski
(1986), and methods proposed by Kumaresan and Shaw (1985), Kumaresan, Scharf
and Shaw (1986) and Evans and Fischl (1973). Related procedures have been proposed
by Matausek, Stankovic and Radivic (1983) and Kay (1984).

It is a feature of the Prony parametrization that it is not restricted to periodic
signals. For suitable choices of c, the signal may include damped sinusoids, real or
complex exponentials, and, if there are repeated roots, damped polynomials. See
Brockwell and Davis (1987, Section 3.6) or Osborne and Smyth (1995) for some dis-
cussion. For general applications, this generally is an advantage of the Prony parame-
trization. However for time series applications we may wish to consider only periodic
signals. A necessary and sufficient condition for the signal to be of the form (2) is that
the roots of C(z) are distinct and lie on the unit circle. For the roots to lie on the unit
circle is necessary that the vector c be conjugate symmetric. A number of authors,
including Marple (1980), Kay and Marple (1981), Chan, Lavoie and Plant (1981),
Nehorai (1985) and Bresler and Macovski (1986), have proposed that this symmetry
constraint on c be incorporated into the estimation method.

Recently Kannan and Kundu (1994) and Kundu and Kannan (1997) have studied
the symmetry constraint for a number of frequency estimation algorithms including
the eigenanalysis algorithm of Osborne (1975) and Kundu (1993). They show that the
constraint-modified eigenanalysis algorithm performs better than the other algorithms
in experiments with two simulated models, one with two complex radian frequencies
and another with one real frequency. Cramér-Rao variance bounds are given for the
simulated models but not for the constrained estimators. The purpose of the current
paper is two-fold. We show that the symmetry constraint can be implemented in a
unified way for the class of eigenanalysis methods by projecting the matrix B onto a
suitable space, thus generalizing the algorithm of Kundu and Kannan. We also study
how the efficiency gained from the symmetry constraint varies as the data generating
process changes. We show that the effect of the constraint, i.e., the difference in
performance between the constrained and unconstrained algorithms, depends critically
on the underlying frequencies, on their separations, on the sample size and on the error
standard deviation. We show that the constraint is most important when it is most
needed, i.e., in the most difficult cases. However there are other parameter values for
which the constraint has essentially no effect at all. Variance bound calculations are
used to study effect of the constraint as a function of the frequency values and their
separations. Simulations are used to assess how closely the actual performance of the
algorithms follow the theoretical variance bounds in small samples. The simulations
allow further conclusions in terms of the error standard deviation and breakdown noise
to signal ratio.

The main conclusions of the paper are summarized below.

• The symmetry constraint is straightforward to implement for eigenanalysis meth-
ods, and reduces rather than increases the amount of computation required.
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• The relative reduction in variance of the constrained over the unconstrained
frequency estimators is arbitrarily large for frequencies close together or, in the
real case, near a multiple of π. However, for each n and p, there are also regularly
spaced frequency values for which the symmetry constraint gives no reduction
in variance at all at low or moderate noise to signal ratios.

• The relative reduction in variance converges to zero as n → ∞ for any set of
frequency values.

• The symmetry constraint increases the breakdown noise level above which each
method ceases to give useful results. The constrained algorithms can tolerate a
noise to signal ratio nearly twice as high as can the unconstrained algorithms.

The plan of the remainder of the paper is as follows. Section 2 describes the
various eigenanalysis methods. Section 3 shows how the symmetry constraint can
be incorporated into the methods by projecting the eigenvectors onto a restricted
subspace. Section 4 assesses the resultant reduction in the variances of the frequency
estimators, using variance bound calculations and simulation. Three data examples
are given in Section 5. The paper finishes with a brief summary.

2 Eigenanalysis methods

For any sinusoidal signal (2) there is a unique vector c = (c1, . . . , c2p+1)
T satisfying

the difference equation (4). Let yt = (yt, yt+1, . . . , yt+2p)
T where the yt are as given in

(1). The basic idea behind eigenanalysis methods is that cTyt has expectation zero for
all t, and therefore ‖aTyt‖/‖a‖ is in some sense minimized by a = c. Eigenanalysis
methods actually compute a suitable matrix B for which aTE(B)a/‖a‖ is minimized
by a = c, and find the eigenvector of B with smallest eigenvalue. The matrix B is
essentially a matrix of sums of squares and cross-products of yt with yt at various lags,
but possibly normalized in a way which depends on c.

Consider the following general eigenanalysis iteration. Let ck be a working estimate
of c. The updated estimate is defined as the solution ck+1 of

(B(ck)− λk+1D)ck+1 = 0 (5)

where B is a suitably defined matrix function of c, D is a constant symmetric matrix
and λk+1 is the closest to zero of such solutions. The eigenproblem is repeated until
convergence. The ωi are then obtained as the angular positions of the roots of the
polynomial C(z), and the αk and φk are obtained from a linear least squares calcu-
lation. The eigenproblem (5) is equivalent to the constrained quadratic minimization
problem

min
c(k+1)∗Dck+1=1

c(k+1)∗B(ck)ck+1

with λk+1 the minimized value. Here c(k+1)∗Dck+1 = 1 is the scaling constraint.
Common choices for D are D = I corresponding to the constraint ‖c‖ = 1, or D =
diag(0, . . . , 0, 1) corresponding to the constraint c2p+1 = 1. The implications of the
choice of D are discussed below.
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The simplest eigenanalysis method is Pisarenko’s. Pisarenko’s method uses D = I,
and specifies that B be a sum of squares and cross-products matrix such as

B =
1

n
Y ∗Y

where

Y =


y1 · · · y2p+1
...

...
yn−2p · · · yn


Different choices of B for Pisarenko’s method are discussed by Kay and Marple (1981).
The above choice for B is called the “covariance matrix” of yt in the signal processing
literature, although the yt are not corrected for their mean, and the resulting eige-
nanalysis method is called the Pisarenko covariance method. The use of the term
“covariance” is a reference to the mixture model for the yt which arises when the
phases φk are distributed uniformly on [0, 2π). Under this mixture model the yt form
a stationary process with mean zero and the matrix B estimates the covariance matrix
of yt. An alternative choice for B is the Toeplitz matrix in which elements on the jth
off-diagonal are (1/n)

∑n−j
t=1 ytyt+j. The use of a Toeplitz matrix has the advantage

that the eigenvector is automatically conjugate symmetric, but in this case E(B) does
not have c as an eigenvector and the frequency estimators derived from B are biased.
Another Toeplitz matrix has elements given by {1/(n− j)}∑n−j

t=1 ytyt+j. This matrix
is an unbiased estimator of the covariance of yt under the above mixture model and
as a consequence the frequency estimators derived from it are less biased than those
from the previous matrix, but it is not guaranteed to be positive definite. In the
next section of this paper we show how to achieve the effect of the Toeplitz matrices
without introducing bias or non-positive definiteness.

Although not usually expressed as an eigenproblem, the extended Prony method
(Kay and Marple, 1981) is as for Pisarenko’s method but with scaling constraint
c2p+1 = 1 instead of ‖c‖ = 1. This choice of scaling has the computational advantage
that the eigenproblem (5) can be reformulated as a linear least squares problem. Kahn
et al (1992) have examined the asymptotic efficiencies of different scaling constraints,
and show that the Pisarenko scaling is preferable to the extended Prony scaling unless
the signal to noise ratio is very small.

The Pisarenko covariance method minimizes the sum of squares of Y c with respect
to c. The algorithm proposed by Osborne (1970) differs from Pisarenko’s method in
that it minimizes a weighted sum of squares. The vector Y c is normalized by its
covariance matrix M(c) = X∗X, where

X∗ =


c1 · · · c2p+1 0

. . . . . .

0 c1 · · · c2p+1


At each iteration Osborne’s algorithm minimizes c(k+1)∗Y ∗M(ck)Y ck+1 with respect
to ck+1 subject to ‖ck+1‖ = 1, resulting in an eigenproblem of the form (5) with

B(c) =
1

n
Y ∗M(c)−1Y
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and D = I. Bresler and Macovski (1986) independently proposed the same algorithm,
as a sequence of constrained quadratic minimizations rather than as a sequence of
eigenproblems, and implemented the Prony constraint real(c2p+1) = 1 rather than
the Pisarenko constraint ‖c‖ = 1. Kahn et al (1992) discuss the effectiveness of sev-
eral scaling constraints, including the two given here. With either scaling constraint,
this algorithm produces estimators with a higher order of accuracy than those of the
Pisarenko or Prony methods.

An eigenanalysis method which returns the actual least squares estimators of the
αk, ωk and φk was proposed by Osborne (1976) and further studied by Osborne and
Smyth (1991, 1995) and Kundu (1993). This algorithm uses

B =
1

n
(Y ∗M−1Y − V ∗V )

where V ∗V is a term which arises from the differentiation of M−1 with respect to
c. This algorithm has the property that the eigenvalue λk converges to zero as the
algorithm converges. Hence it returns estimators which are invariant with respect to
the scaling constraint defined by D (Osborne and Smyth, 1995).

Kumaresan and Shaw (1985) and Kumaresan et al (1986) proposed a two-phase
iterative quadratic minimization algorithm. Their first phase can be shown to be
equivalent to the Osborne/Bresler/Macovski algorithm, while their second stage is
analogous to Osborne’s least squares algorithm described above.

The asymptotic properties of least squares estimators for real sinusoids have been
considered by, for example, Whittle (1951, 1953), Walker (1971), Hannan (1973) and
Hasan (1982). The least squares estimators of the frequencies have variances which
are asymptotically O(n−3) while those of the αk and φk are O(n−1). Rice and Rosen-
blatt (1988) show, however, that the sum of squares has many local minima at a
separation of O(n−1) in the frequencies, and that the estimates of the amplitudes and
phases are consistent only if the frequencies are resolved to the global rather than to
a local minimum. Mackisack et al (1991) show that the same qualitative behavior,
O(n−3) convergence of its estimator but many local minima, is found in terms of the
eigenvector c as well as in terms of the frequencies.

The non-least squares algorithms are generally less efficient. Pisarenko’s method,
for example, returns frequency estimates with O(n−1) variances (Sakai, 1984; Stoica
and Nehorai, 1988; Kahn et al, 1992). An exception is the Osborne/Bresler/Macovski
algorithm, which Kahn et al (1992) show is comparable in efficiency to least squares.

The extended Prony and Pisarenko algorithms are non-iterative and do not re-
quire starting values. Osborne’s least squares algorithm, as with all least squares
based frequency methods, requires excellent starting values. In this study, the Os-
borne/Bresler/Macovski algorithm proved to be far less sensitive to starting values
than the least squares algorithm, and converged in almost all cases when started
from the Pisarenko estimates. The least squares algorithm usually converged to a
local minimum if started from the Pisarenko estimates, but almost always found the
global minimum when started from the Osborne/Bresler/Macovski estimates, unless
the noise level was particularly high.

A three stage algorithm can therefore be recommended for computing the least
squares estimators. Pisarenko’s method is used to started the Osborne/Bresler/Macovski
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algorithm, which is turn is used to start the least squares algorithm. This hybrid algo-
rithm proved to be a very reliable method of computing the least squares estimators
without the need to provide starting values.

3 Constrained eigenanalysis methods

Suppose z is a root of the polynomial C(z). If z lies on the unit circle, then z̄ =
z−1, and 0 = C̄(z) = c̄1 + c̄2z̄ + . . . + c̄2p+1z̄

2p = c̄1 + c̄2z
−1 + . . . + c̄2p+1z

−2p, so
c̄2p+1 + c̄2pz

2 + . . .+ c̄1z
2p = 0. Comparing this with C(z) = 0 shows that cj = c̄2p+2−j

for j = 1, . . . , p, i.e., c must be conjugate symmetric. This condition on c is necessary
but not sufficient for the roots of C(z) to lie on the unit circle. Conjugate symmetry
guarantees only that if a root z occurs, then so does it’s reciprocal z−1, not that |z| = 1.
A fully sufficient condition would involve inequality constraints on the cj which could
not easily be incorporated into an eigen-calculation. Conjugate symmetry however is
locally sufficient for c in a neighborhood of the true values.

The symmetry constraint can be incorporated into the eigenproblem using the
reduction method suggested by Osborne and Smyth (1995, Section 5). Let Q1 and Q2

be the (2p+ 1)× p+ 1 and (2p+ 1)× p matrices

Q1 =

 Ip/
√

2 0
0 1

Jp/
√

2 0

 , Q2 =

 Ip/
√

2
0

−Jp/
√

2


where Ip is the p× p identity matrix and Jp is the p× p anti-diagonal matrix

Jp =


0 1

.
.

.
1 0


Then the symmetry constraint can be represented as c = Q1γ1 + iQ2γ2 where γ1 and
γ2 are unrestricted real vectors of dimension p+ 1 and p respectively.

Suppose for the moment that the observations yt are real. In that case, B and c
also will be real, so γ2 = 0 and the eigenproblem (5) reduces to

(QT
1B(ck)Q1 − λk+1QT

1DQ1)γ
k+1
1 = 0 (6)

A constrained eigenanalysis method consists of iteratively solving (6) for γ1, then
recovering c from ĉ = Q1γ̂1. Note that Q1 has been chosen to satisfy QT

1Q1 = I, so
(6) is an ordinary eigenproblem if D = I.

The transformation from c to γ may be interpreted by noting that Q1Q
T
1 is the

orthogonal projection onto the linear space of symmetric c. The effect of the trans-
formation is to replace B and D in (5) with Q1Q

T
1BQ1Q

T
1 and Q1Q

T
1DQ1Q

T
1 , both

of which are Toeplitz matrices. A related but different method of incorporating the
symmetry constraint into the extended Prony method is given by Kay and Marple
(1981).
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Now consider the case in which the yt are complex. In the complex domain, the
symmetry condition on c is not expressible as a linear constraint. Therefore, in order to
use the above linear reduction methods, it is necessary to expand the eigenproblem (5)
into a real eigenproblem of twice the dimension. The problem which the eigenproblem
solves is to minimize c∗B(c)c subject to a scaling constraint. Let c1 and c2 be the
real and imaginary parts of c and B1 and B2 the real and imaginary parts of B(c).
Then

c∗B(c)c =
(
cT1 cT2

)( B1 −B2

B2 B1

)(
c1

c2

)
(7)

Suppose the scaling constraint is

(
cT1 cT2

)( D11 D12

D21 D22

)(
c1

c2

)
= 1

where D11 and D22 are symmetric matrices and D21 = DT
12. Introducing the Lagrange

multiplier λ, the quadratic form (7) is minimized subject to the scaling constraint
when (cT1 cT2 )T satisfies the generalized eigenproblem[(

B1 −B2

B2 B1

)
− λ

(
D11 D12

D21 D22

)](
c1

c2

)
= 0 (8)

Introducing now the symmetry constraint c1 = Q1γ1 and c2 = Q2γ2, the eigenproblem
is transformed to[(

QT
1B1Q1 −QT

1B2Q2

QT
2B2Q1 QT

2B1Q2

)
− λ

(
QT

1D11Q1 QT
1D12Q2

QT
2D21Q2 QT

2D22Q2

)](
γ1

γ2

)
= 0 (9)

Since Q1 and Q2 have been chosen orthogonal, (9) is an ordinary eigenproblem if
D11 = D22 = I and D12 = D21 = 0. A constrained eigenanalysis method consists of
solving (9) iteratively until convergence.

The frequency estimates are obtained by rooting the polynomial C(z). Estimates
of the coefficients and phases are obtained by conditional least squares. Let ρk be the
roots of C(z) and let µ = (µ1, . . . , µn)

∗. The signal can be written µ = Aβ where A
is the n× 2p matrix with (j, k)th element ρjk. The least squares estimator of β is

β̂ = (A∗A)−1A∗y

and the fitted signal is µ̂ = Py where P = A(A∗A)−1A∗ is the orthogonal projection
onto the column space C(A). In the complex case, the vector β̂ holds the estimates of
the complex coefficients αk. In the real case, P is real and the elements of β̂ occur in
conjugate pairs. Assuming that the roots ρk lie on the unit circle, write ρk = exp(iωkt).
Then µ̂t contains terms of the form

β̂k exp(iωkt) +
¯̂
βk exp(−iωkt) = αk cos(ωkt+ φk)

where αk cos(φk) = 2 Real(β̂k) and αk sin(φk) = −2 Imag(β̂k).
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4 Variance Reduction

4.1 Crámer-Rao Lower Bounds

The variances of the frequency estimators can be generally expected to decrease when
the signal is constrained to be periodic, because the number of freely varying parame-
ters is reduced. Consider a sum of exponentials

µt =
2p∑
k=1

αk exp(ωkt)

where the αk and ωk are complex numbers. Let ψ be the vector of the real parts of
the ωk, and let θ represent the other parameters. The unconstrained least squares
estimators ψ̂ and θ̂ are asymptotically multinormal with a covariance matrix which
we will write as

cov(θ̂, ψ̂) =

(
Σθθ Σθψ

Σψθ Σψψ

)
.

Here Σθθ is the covariance matrix of θ̂, Σψψ is the covariance matrix of ψ, and Σθψ =

Σ∗
ψθ is the covariance matrix of θ̂ with ψ̂. For ψ̂ and θ̂ in a suitable neighborhood of

the true values, the symmetry constraint on ĉ is equivalent to the constraint ψ̂ = 0.
The covariance matrix of the other parameters conditional on the constraint is

cov(θ̂|ψ̂ = 0) = Σθθ − ΣθψΣ−1
ψψΣψθ.

The variance reduction due to the symmetry constraint is therefore

cov(θ̂)− cov(θ̂|ψ̂ = 0) = ΣθψΣ−1
ψψΣψθ

which is non-negative definite. Each individual component θ̂j of θ̂ will enjoy a reduced

variance, unless it is entirely uncorrelated with ψ̂.
An asymptotically accurate expression for cov(θ̂, ψ̂) is given by the Cramér-Rao

lower bound for the variances of unbiased estimators. Let µ̇θ and µ̇ψ be the gradient
matrices of µ = (µ1, . . . , µn)

∗ with respect to θ and ψ respectively. The Cramér-
Rao bound for the variance of the unconstrained estimators is the inverse Fisher
information matrix,

V = σ2

(
µ̇∗
θµ̇θ µ̇∗

θµ̇ψ
µ̇∗
ψµ̇θ µ̇∗

ψµ̇ψ

)−1

where σ2 is the variance of the observational errors. In particular the bound for the
variance of the unconstrained estimator of θ is the submatrix

Vθθ = σ2
{
µ̇∗
θµ̇θ − µ̇∗

θµ̇ψ(µ̇∗
ψµ̇ψ)−1µ̇∗

ψµ̇θ
}−1

On the other hand, the Cramér-Rao bound for the constrained estimators is simply

Vc = σ2 (µ̇∗
θµ̇θ)

−1
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so the increase in the Fisher information for θ due to the symmetry constraint is

V −1
c − V −1

θθ =
1

σ2
µ̇∗
θµ̇ψ(µ̇∗

ψµ̇ψ)−1µ̇∗
ψµ̇θ

The size of this term depends on the level of the collinearity between µ̇θ and µ̇ψ. The
higher the collinearity the greater will be the reduction in variance of the constrained
over the unconstrained estimator of θ.

The essential features regarding collinearity and variance reduction can be seen in
the case of one real sinusoid. If p = 1 then we can write

µt = αe(ω+iψ)t + ᾱe(ω−iψ)t = eψtρ sin(ωt+ φ)

where α is an arbitrary complex number, ω and ψ are real numbers, and ρ sin(φ) and
−ρ cos(φ) are the real and imaginary parts of α. In this case we can put θ = (ρ, φ, ω)T .
If the signal actually is sinusoidal, then ψ = 0 and we wish to impose the constraint
ψ̂ = 0. The relative reduction in the variance of the frequency estimate ω̂ due to
the constraint is simply the squared correlation between ω̂ and ψ̂. The correlation
depends on the collinearity of ∂µt/∂ω = ρt cos(ωt + φ) and ∂µt/∂ψ = ρt sin(ωt + φ).
(All quantities are evaluated at ψ = 0.) Now ∂µt/∂ω and ∂µt/∂ψ become uncorrelated
as n→∞ for nonzero ω, so the variance reduction must become small as n becomes
large. On the other hand, ∂µt/∂ω and ∂µt/∂ψ become collinear as ω approaches zero,
so the relative reduction in variance approaches 100%. Putting this together, we can
expect the symmetry constraint to be most important for estimating a small frequency
from a small data set. The symmetry constraint helps in the most difficult case.

As a function of ω, the correlation between ∂µt/∂ω and ∂µt/∂ψ also passes through
zero at values close to the fundamental frequencies jπ/(2n), j = 1, . . . , n− 1. We can
therefore expect a series of discrete frequency values for which the symmetry constraint
has little effect.

The remaining gradients are ∂µt/∂ρ = sin(ωt + φ) and ∂µt/∂φ = ρ cos(ωt + φ).
The first will be generally be partially collinear with ∂µt/∂ψ even for large n, while
the second will not. Therefore the constraint will generally reduce the variance of the
amplitude ρ̂ more than that of the phase φ̂.

The same sort of results apply when there are several frequencies. The pair ω̂, ψ̂
for each frequency is asymptotically independent of all other pairs in addition to ω̂
and ψ̂ being independent of each other. Therefore the relative variance reduction will
become small as n becomes large. On the other hand, the relative variance reduction
will be large when there are nearly equal frequencies or when there are frequencies
near zero. Note that the relative reduction in variance does not depend on ρ or σ2,
and depends only marginally on φ.

4.2 Numerical Calculations

In this section and the next, variance calculations are done for sample sizes n = 20
and n = 50. Even for n = 20, maximum likelihood estimation is able to return
fairly precise estimates for reasonable signal-to-noise levels. Samples of this size are of
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Figure 1: Cramér-Rao lower bounds for the frequency estimator for a single sinusoid
signal. Sample sizes of 20 and 50 and phases of zero and π/4 are used. The dotted line
gives bounds for constrained estimators, the solid line for unconstrained estimators.
The assumed noise-to-signal-ratio is unity.
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Figure 2: Cramér-Rao lower bounds for the frequency estimator when there is a second
frequency at π/4. Both phases are set to zero and the noise-to-signal-ratio is unity.
Sample sizes of 20 and 50 are used. The dotted line gives bounds for constrained
estimators, the solid line for unconstrained estimators.

interest in many applications, especially when it is necessary to detect the existence
of or a change in an input frequency before many new observations are received.

The constrained and unconstrained Cramér-Rao lower bounds for one sinusoid with
n = 20 and n = 50 are displayed in Figure 1. The vertical axis is on a logarithmic-scale,
so the difference in height between the curves measures relative variance reduction.
The assumed noise-to-signal ratio is unity. It can be seen that the relative gain in
precision of the constrained over the unconstrained estimator is arbitrarily large for ω
near 0 (and hence also near multiples of π), but decreases as ω approaches π/2. On
the other hand there are intermediate values, at spacings of about π/n, for which the
gain is exactly zero. Moving the phase φ from zero to π/2 shifts the zero-gain points
slightly, but does not alter the qualitative behavior. Comparing n = 50 with n = 20,
the variances are smaller, the relative gain is lower, and the zero-gain points are more
closely spaced, but the qualitative picture is the same.

When there are two or more sinusoids, the relative variance reduction depends on
the separations between the frequencies as well as on their proximity to zero. Figure 2
displays constrained and unconstrained Cramér-Rao lower bounds for n = 20 and
n = 50 when there is a second frequency at π/4. The horizontal axis gives the first
frequency, which varies from 0 to π/2 while the second frequency is held fixed. The
frequencies are equally weighted, both phases are zero, and the noise-to-signal ratio is
unity. The second frequency introduces an additional point of singularity near which
the relative gain in precision of the constrained over the unconstrained estimator
becomes arbitrarily large. There are still intermediate points of zero-gain, but these
are less apparent than in the single sinusoid case.
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Figure 3: Cramér-Rao lower bounds for the lower frequency estimator when there are
two frequencies at a spacing of 0.2. Both phases are set to zero and the noise-to-signal-
ratio is unity. Sample sizes of 20 and 50 are used. The dotted line gives bounds for
constrained estimators, the solid line for unconstrained estimators.

Figure 3 gives constrained and unconstrained Cramér-Rao lower bounds for two
sinusoids when the frequencies are held at a fixed separation of 0.2. The horizontal axis
gives the lower of the two frequencies. The relative gain in precision of the constrained
over the unconstrained estimator remains substantial throughout the frequency range
as well as becoming arbitrarily large as for frequencies near zero or multiples of π.

4.3 Simulations

The above results use Cramér-Rao lower bounds, which are asymptotic expressions.
Simulations were carried out to determine how accurate are the asymptotic results
for moderate sample sizes. In the case of a single sinusoid, two frequency values
were chosen for simulation: ω = 0.2 for which the Cramér-Rao variance bound of
the unconstrained estimator is 2.1 times that of the constrained, and ω = 0.3 for
which the two variance bounds are equal to three decimal places. 1000 data sets were
generated in each case. (More accurate results though were sought for ω = 0.2 with
the two highest and two lowest noise to signal ratios. These results are based on
40,000 simulated data sets.) For each simulated data set, a frequency estimate was
obtained from Osborne’s least squares algorithm. Starting values for the algorithm
were obtained from Pisarenko’s method and the Osborne/Bresler/Macovski algorithm,
as described in Section 2. To check that the least squares algorithm was indeed finding
the least squares estimator rather than a local minima, the algorithm was also started
at the known true frequency. This lead in almost all cases to the same final frequency
estimate.
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Figure 4: Variances of constrained (crosses) and unconstrained (circles) frequency
estimates from the simulations. The true signal is a single sinusoid with frequency 0.2
and 0.3 respectively. The phase is zero and the sample size is 20, The horizontal axis
is log10(σ

2/ρ2). The dotted line gives the Cramér-Rao lower bound for constrained
estimators, the solid line for unconstrained estimators.

Figure 4 plots the simulation results for the least squares algorithm. The verti-
cal axis is log10 of the variance of the frequency estimates and the horizontal axis is
log10(σ

2/ρ2), which is a representation of the noise to signal ratio. The Cramér-Rao
lower bounds are represented by parallel lines. It can be seen that the variances follow
the Cramér-Rao lower bounds very closely for low noise to signal ratios. The break-
down point for σ/ρ above which the actual variance rises above the Cramér-Rao lower
bound is about 0.16 and 0.20 for the unconstrained estimator at the two frequencies
and about 0.42 and 0.37 for the constrained estimator. Above the breakdown points,
the estimation method often produced real exponentials (i.e., frequencies at zero or
π) and associated sums of squares much above the theoretical variance bound.

Detailed simulation results are given in Table 1 (ω = 0.2) and in Table 2 (ω =
0.3). The Osborne/Bresler/Macovski algorithm (Osborne/BM) is seen to be at least
equivalent in performance to the least squares algorithm (Least Squares). Starting
the least squares algorithm from the true values (LS from true) improves on the
automatically generated started values only when the symmetry constraint is not
used and the noise to signal ratio is at the higher values. As expected, the Pisarenko
algorithm is less efficient than either of the Osborne algorithms. The unconstrained
Pisarenko algorithm is as good as its constrained version for low noise levels, but
quickly breaks down as the noise-to-signal level increases above σ/ρ = 0.1. The
performance of the constrained Pisarenko algorithm degrades very much more slowly
as the noise level increases.

The simulations show that the Cramér-Rao lower bounds are an accurate indica-
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Table 1: Simulation results one real sinusoid. The true frequency is 0.2, the phase is
zero and the sample size is 20. Part (a) of the table gives the means and part (b) the
standard deviations of the frequency estimates for various estimation methods. 1000
data sets were generated for each noise level1. In part (b), Cramér-Rao lower bounds
are also given.

(a) Means.

Noise to Signal Ratio (σ/ρ)
0.01 0.1 0.15 0.2 0.3 0.4 0.5 0.6

Constrained
Pisarenko 0.2000 0.1960 0.1887 0.1853 0.1876 0.1941 0.2065 0.2362
Osborne/BM 0.2000 0.2001 0.2002 0.2002 0.2007 0.2009 0.2031 0.2157
Least Squares 0.2000 0.2000 0.2000 0.1998 0.1997 0.1992 0.2017 0.2229
LS from true 0.2000 0.2000 0.2000 0.1998 0.1997 0.1992 0.2044 0.2302

Unconstrained
Pisarenko 0.1999 0.1886 0.1741 0.2443 0.6450 1.0181 1.2615 1.4291
Osborne/BM 0.2000 0.1999 0.1998 0.2145 0.3757 0.5539 0.7730 0.9516
Least Squares 0.2000 0.1997 0.1995 0.2139 0.3480 0.4945 0.6408 0.7831
LS from true 0.2000 0.1997 0.1995 0.1991 0.2026 0.2403 0.3226 0.4618

(b) Standard deviations.

Noise to signal ratio (σ/ρ)
0.01 0.1 0.15 0.2 0.3 0.4 0.5 0.6

Constrained
Pisarenko 0.00318 0.0379 0.0665 0.0904 0.1245 0.1517 0.1918 0.2860
Osborne/BM 0.00048 0.0048 0.0073 0.0099 0.0149 0.0200 0.0574 0.1801
Least Squares 0.00048 0.0048 0.0073 0.0099 0.0149 0.0201 0.0788 0.2364
LS from true 0.00048 0.0048 0.0073 0.0099 0.0149 0.0201 0.1085 0.2658
CRLB 0.00048 0.0048 0.0072 0.0096 0.0143 0.0191 0.0239 0.0287

Unconstrained
Pisarenko 0.00280 0.0444 0.1550 0.5108 1.1047 1.3311 1.4005 1.4096
Osborne/BM 0.00070 0.0070 0.0104 0.2081 0.6996 0.9612 1.1675 1.2836
Least Squares 0.00070 0.0071 0.0105 0.2082 0.6468 0.8822 1.0430 1.1571
LS from true 0.00070 0.0071 0.0105 0.0146 0.1352 0.3500 0.5874 0.8259
CRLB 0.00069 0.0069 0.0104 0.0139 0.0208 0.0278 0.0347 0.0416

1 Half of the results, those for σ/ρ = 0.01, 0.1, 0.5 and 0.6, are based on 40,000
simulations.
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Table 2: Simulation results for one real sinusoid. The true frequency is 0.3, the phase
is zero and the sample size is 20. Part (a) of the table gives the means and part (b) the
standard deviations of the frequency estimates for various estimation methods. 1000
data sets were generated for each noise level. In part (b), Cramér-Rao lower bounds
are also given.

(a) Means.

Noise to signal ratio (σ/ρ)
0.1 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.7

Constrained
Pisarenko 0.2992 0.2952 0.2893 0.2808 0.2812 0.2724 0.2641 0.2726 0.3164
Osborne/BM 0.2998 0.2996 0.2986 0.2991 0.2967 0.2979 0.2935 0.2925 0.3157
Least Squares 0.2999 0.2999 0.2992 0.2998 0.2976 0.2992 0.2994 0.3059 0.3610
LS from true 0.2999 0.2999 0.2992 0.2998 0.2976 0.2990 0.3003 0.3094 0.3482

Unconstrained
Pisarenko 0.2962 0.2830 0.3441 0.4793 0.5598 0.7826 1.1266 1.2320 1.4171
Osborne/BM 0.3000 0.3003 0.3141 0.3548 0.3589 0.4692 0.6491 0.7507 0.9467
Least Squares 0.2999 0.2999 0.3103 0.3385 0.3385 0.4100 0.5303 0.5872 0.7524
LS from true 0.2999 0.2999 0.2992 0.2998 0.2977 0.3023 0.3117 0.3521 0.4196

(b) Standard deviations.

Noise to signal ratio (σ/ρ)
0.1 0.2 0.25 0.3 0.35 0.4 0.5 0.6 0.7

Constrained
Pisarenko 0.0161 0.0434 0.0654 0.0976 0.1090 0.1339 0.1742 0.2053 0.3408
Osborne/BM 0.0058 0.0117 0.0150 0.0173 0.0211 0.0261 0.0346 0.0439 0.2483
Least Squares 0.0058 0.0117 0.0146 0.0168 0.0206 0.0310 0.1042 0.1712 0.3914
LS from true 0.0058 0.0117 0.0146 0.0168 0.0206 0.0260 0.1055 0.1821 0.3531
CRLB 0.0057 0.0113 0.0141 0.0170 0.0198 0.0226 0.0283 0.0339 0.0396

Unconstrained
Pisarenko 0.0160 0.1953 0.5103 0.7993 0.9119 1.1321 1.3214 1.3481 1.3684
Osborne/BM 0.0058 0.0116 0.2011 0.3884 0.4082 0.6699 0.9343 1.0367 1.1841
Least Squares 0.0058 0.0117 0.1618 0.3091 0.3089 0.5033 0.7083 0.7640 0.9323
LS from true 0.0058 0.0117 0.0146 0.0167 0.0204 0.0932 0.2072 0.3862 0.5361
CRLB 0.0057 0.0113 0.0141 0.0170 0.0198 0.0226 0.0283 0.0339 0.0396
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Figure 5: Cramér-Rao lower bounds for the frequency of a complex sinusoid when
there is a second frequency at π/4. Both phases are set to zero and the noise-to-
signal-ratio is unity. Sample sizes of 20 and 50 are used. The dotted line gives bounds
for constrained estimators, the solid line for unconstrained estimators.

tion of the performance of the constrained and unconstrained least squares frequency
estimators for low noise-to-signal ratios, but understate the advantage of the con-
strained estimators at higher noise levels. It appears that the constrained estimators
can tolerate noise-to-signal ratios very roughly twice as high as can the unconstrained
estimators. Simulation results for signals made up of two sinusoids were similar to
those with one sinusoid, and are not otherwise reported here.

4.4 The Fully Complex Case

In the case of complex signals in complex noise, frequencies near zero or π do not
cause a problem, but the situation is otherwise similar to the real case. If there is only
one complex exponential, the Cramér-Rao lower bound is constant irrespective of the
frequency or symmetry constraint. With two or more frequencies the Cramér-Rao
lower bound, and the reduction achieved by the symmetry constraint, depend on how
close the frequencies are. Figure 5 plots the constrained and unconstrained variance
bounds with two equally weighted frequencies. The second frequency is fixed at π/4,
and the signal-to-noise-ratio is one. This figure shows the same behavior as in the real
case, except that there is no singularity at zero.

4.5 Variance of the Eigenvector

It is also of interest to study the variance of the eigenvector estimator ĉ. Mathemat-
ically, the variance reduction due to the symmetry constraint can be studied more
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Table 3: Estimated frequencies for the Inner Diameter data. NA indicates that the
roots of the Prony polynomial were not a conjugate pair so that a frequency could not
be determined.

Pisarenko Osborne/BM Least Squares CRLB
Constrained 0.2711 0.3369 0.3379 (0.0225)
Unconstrained NA NA 2.9713 (0.0227)

directly for c than for the frequencies, because the symmetry constraint is linear in ĉ.
The variance of ĉ is of interest in its own right because the estimated signal µt can
be calculated directly from c without rooting the polynomial to find the frequencies
(Osborne and Smyth, 1991, Section 3) and because c defines the transfer function for
yt viewed as an ARMA process.

The Fisher information matrix for c, adjusted for the αk and the φk, is

Ic|α,φ =
1

σ2

∂µ∗

∂c
(I − P )

∂µ

∂c
=

1

σ2

∂µ∗

∂c
PX

∂µ

∂c

where PX = X(X∗X)−1X∗ is the orthogonal projection onto the column space of X.
Now X∗µ = 0, so

X∗∂µ

∂c
= −∂X

∂c

∗
µ = M

where

M =


µ1 · · · µ2p+1
...

...
µn−2p · · · µn


Hence

Ic|α,φ = σ−2M∗(X∗X)−1M

The Cramér-Rao lower bound for c is the Moore-Penrose inverse V0 = I+
c|α,φ. The

Cramér-Rao lower bound for γ1 becomes (QT
1 Ic|α,φQ1)

+, so the bound for the sym-
metrically constrained c = Qγ1 is V1 = Q1(Q

T
1 Ic|α,φQ1)

+QT
1 The matrix V0 has 2p

non-zero eigenvalues, and one zero eigenvalue corresponding to the scaling constraint.
The effect of the projection reduction here is to put half the positive eigenvalues of V0

to zero while leaving the others unchanged.

5 Examples

5.1 Inner Diameter of a Landing Gear Triunion

The data give 29 consecutive measurements of the average inner diameter of a land-
ing gear triunion (Spurrier and Thombs, 1990). It is of interest to detect periodic
behavior here as it indicates an out of control state which may not be detected by
Shewhart charts. The constrained least squares algorithm finds a frequency of 0.337
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Figure 6: Inner diameter data with one sinusoid.

corresponding to period 2π/0.337 = 18.6 (Figure 6). Although the frequency is highly
significant (P = 0.0008), the unconstrained algorithms fail on this data, returning the
wrong frequency or failing to find frequencies at all (Table 3). Table 3 also gives the
Cramér-Rao lower bounds for the standard deviations of the frequency estimators.

5.2 Forces on a Cylinder

Newton (1988) studied waves emanating from a cylinder suspended in a tank of water.
The data give the relative vertical displacement at equally spaced times. The waves
were believed to be subject to high frequency vibration, as an artifact of the experiment
equipment, as well as lower frequency vibration which reflects forces acting on the
cylinder. It is of interest to identify and to filter out the high frequency vibration.

Use of the constrained least squares algorithm finds six significant frequencies (Fig-
ure 7). The high frequency oscillation is found to be at 2.34 with a possible harmonic
at 1.23. The slower oscillations are represented by a range of frequencies from 0.24 to
0.81, which may represent a continuous peak in the spectra around these values (Ta-
ble 4). The Cramér-Rao lower bounds for the standard deviations, computed using the
constrained least squares estimates, suggest that the two high frequencies are equally
well estimated with or without the symmetry constraint while the four slower frequen-
cies are much less well determined when the constraint is not used. In the practice,
estimation using the constraint proves to be more stable. If the number of frequencies
is reduced from six to five, then the frequencies returned by the constrained algorithms
are, to sampling accuracy, a subset of the six given here, while those returned by the
unconstrained algorithms are different. All of the unconstrained algorithms returned
frequencies with damping factors which were ignored when extracting the frequencies.
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Figure 7: Vertical displacements of waves emanating from a cylinder suspended in
water. The estimated signal consists of six sinusoidal frequencies.

Table 4: Estimated frequencies of waves emanating from a cylinder suspended in
water.

Frequencies
1 2 3 4 5 6

Constrained
Pisarenko 0.3305 0.4332 0.9611 1.4347 2.0939 2.3696
Osborne/BM 0.2148 0.3906 0.5184 0.7881 1.2063 2.3237
Least Squares 0.2381 0.4045 0.5475 0.8142 1.2341 2.3440
CRLB (0.0086) (0.0051) (0.0144) (0.0149) (0.0192) (0.0133)

Unconstrained
Pisarenko 0.3268 0.4373 0.9576 1.4438 2.0924 2.3705
Osborne/BM 0.1737 0.3764 0.5015 0.8264 1.2166 2.3330
Least Squares 0.1681 0.3722 0.4982 0.8128 1.2299 2.3429
CRLB (0.0335) (0.0227) (0.0532) (0.0248) (0.0195) (0.0136)
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Figure 8: Voice data from singing the vowel ’ooh’. The estimated signal has three
frequencies.

5.3 Voice Data from Singing the Vowel ’ooh’

The data give the normalized magnitudes of voice data when the vowel ’ooh’ was
sung at a pitch of 290 Hz. A sampler/synthesizer was used to capture and to store
the data (Oliver, 1997). The frequencies and amplitudes found in the signal are used
to identify the phonetic vowel and are of interest in voice synthesis, therapy and
training. In this case the data are very regular and are well modeled by a frequency
and two harmonics (Figure 8). The symmetry constraint turns out to be of only
marginal importance here. The constrained and unconstrained algorithms give similar
results, even though the unconstrained algorithms returned damping factors which
were ignored when extracting the frequencies (Table 5). Even for this very regular
data, Pisarenko’s method is less efficient than the iterative algorithms and fails to
correctly identify the third frequency.

6 Summary

It has been shown that the symmetry constraint on the eigenvector c is a natural
modification to eigenanalysis based algorithms for estimating frequencies. In most
cases this is equivalent to constraining the signal to be periodic.

The constraint has been shown to substantially improve the precision of the fre-
quency estimates when the frequencies are difficult to resolve, that is when the noise
to signal ratio is high, when the frequencies are nearly equal, or when the frequencies
are close to zero. In other cases the gain from imposing the constraint depends on the
actual values of the frequencies and the sample size. The gain is generally much less
evident for larger sample sizes.
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Table 5: Estimated frequencies for the voice data.

Frequencies
1 2 3

Constrained
Pisarenko 0.1361 0.3827 1.8136
Osborne/BM 0.1134 0.2299 0.3402
Least Squares 0.1134 0.2297 0.3408
CRLB (0.0003231) (0.0009395) (0.0008023)

Unconstrained
Pisarenko 0.1358 0.3832 1.8147
Osborne/BM 0.1134 0.2298 0.3401
Least Squares 0.1134 0.2299 0.3400
CRLB (0.0003234) (0.0009400) (0.0008033)

Perhaps the most significant result is that the constraint extends the usefulness
of all the eigenanalysis methods, most notably Pisarenko’s method, into higher noise
situations. It increases the breakdown noise to signal ratio above which the methods
fail to give useful results. This result is particularly important if Pisarenko’s method
is used to find starting values with which to initialize the other frequency estimation
algorithms. In that case the constraint roughly doubles the noise to signal ratio at
which the methods can be used.

A three stage algorithm, in which Pisarenko’s method is used to started the Os-
borne/Bresler/Macovski algorithm, which is turn is used to start the least squares
algorithm, proved to be a very reliable method of computing the least squares estima-
tors without the need to provide starting values.

Frequency estimation software which implements the symmetry constraint can be
obtained from http://www.statsci.org/other/prony.html. The software is avail-
able for the S-Plus and Matlab programming environments.
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