
Curvature and Convergence

G.K. Smyth, Statistics and Applied Probability Program, University of California, Santa Barbara

Abstract

Fisher’s method of scoring is probably the most important
general algorithm in statistics. This paper picks out those
aspects of curvature, normal and statistical, which are rele-
vant to its convergence properties. For any particular data
set the convergence of the algorithm near the maximum likeli-
hood estimate depends on the eigenvalues of the convergence
matrix, the derivative of the iteration function. In the least
squares case, these eigenvalues can be interpretted as normal
curvatures of one-dimensional curves on the response surface.
Statistical curvature is shown to provide a before-the-data esti-
mate of the squared sizes of the components of the convergence
matrix. Bates and Watts (1980)’s intrinsic curvature is shown
to correspond to the expected size of the convergence matrix
in particular directions. A theme of the paper is that there is
a close relationship between the convergence properties of the
method of scoring, and the statistical properties of the model
being fitted. This relationship is in large part due to mutual
dependence on curvature.
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1 Introduction

Statisticians in general seem to have given surprisingly
little attention to the convergence properties of the algo-
rithms they use to estimate nonlinear models. Jennrich
(1969), Ruhe and Wedin (1980), Osborne (1987) and Os-
borne and Smyth (1987a,b) are amongst the small num-
ber of papers which examine such questions. This paper
concentrates on Fisher’s method of scoring, perhaps the
most important general algorithm in statistics, and ar-
gues that there is an intimate connection between the
the algorithm’s convergence properties and the statisti-
cal properties of the models being fitted. The connec-
tion is that both depend on statistical curvature. Efron
(1975), Hamilton, Watts and Bates (1982) and Amari
(1985) have demonstrated the relevance of statistical cur-
vature to nonlinear statistical inference. The aim of this
paper is to show its relevance to the convergence of the
scoring algorithm. Such a relationship is not surprising,
since both the method of scoring and statistical curva-
ture are concerned with quadratic approximations to the
log-likelihood function, and with approximating the log-
likelihood hessian with the Fisher information matrix.

The following two examples will make clear the sort of
phenomenon we are interested in, and illustrate behaviour
which is familiar to many applied statisticians. Table 1
gives the average number of iterations required for con-
vergence by the Gauss-Newton algorithm on a simulated

Table 1: The number of iterations to convergence for
the Gauss-Newton algorithm applied to a rational fitting
problem. Median and maximum over 10 simulated data
sets.

n\σ .030 .010 .003 .001

32 4 5 3 3 3 3 2 3
64 3 5 3 4 3 3 2.5 3

128 3 5 3 3 2.5 3 2 3
256 3 3 2 3 2 3 2 2
512 3 3 2 3 2 3 2 2

Table 2: Median and maximum iteration counts for the
Levenberg and Prony algorithms applied to exponential
fitting. Results for the Levenberg algorithm are below
those for Prony. The maximum number of iterations al-
lowed for the Levenberg algorithm was 40.

n\σ 0.030 0.010 0.003 0.001

32 6 11 4 6 3 4 3 3
40 40 33 40 26 40 16 40

64 4 8 3 4 2 3 2 2
32.5 40 31.5 40 20 40 13 22

128 3 3 2 3 2 2 1.5 2
16.5 40 10 40 8 34 6 18

256 2 3 2 2 1 1 1 1
30 30 20 40 14 32 10 12

512 1 1 1 1 1 1 1 1
36.5 40 19.5 40 13 22 7.5 12

problem for various sample sizes and standard deviations.
Observations were simulated to have means

IE(yi) =
α1 + α2ti

1 + β1ti + β2t2i

with the ti equally spaced on the unit interval, and con-
stant variance σ2. The actual parameter values were
α1 = α2 = .5, β1 = −.5 and β2 = .1. It can be seen
that the number of iterations required decreases as σ de-
creases and as n increases. In other words, fewer iterations
are required if there is more information in the data set.
The fact no more than 4 iterations were required even for
large σ and small n, reflects the fact that rational fitting
is quite close to being a linear problem.

The second example is more dramatic. Data were sim-
ulated as before, except that the means were given by

IE(yi) = α1 + α2e
−β1ti + α3e

β2ti .
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The actual parameter values were α1 = .5, α2 = 2,
α3 = −1.5, β1 = 4 and β2 = 7. Exponential func-
tion fitting is a highly nonlinear problem, with which
the straightfoward application of the Gauss-Newton algo-
rithm would have had little success. The algorithms used
instead were the Levenberg modification of Gauss-Newton
(Osborne, 1976), and a more special purpose algorithm
based on Prony’s parametrization described by Osborne
and Smyth (1987b). Table 2 shows the same pattern in
the number of iterations required as was observed for the
rational example. The decrease in the number of itera-
tions for large n is especially dramatic for the modified
Prony algorithm. For the Levenberg algorithm this effect
is somewhat obscured by its very careful convergence cri-
terion, which caused the algorithm to return increasingly
precise estimates for sample sizes over 128.

2 The Method of Scoring

Consider the iterative process

θk+1 = F (θk)

in which the iteration function F updates the current es-
timate θk ∈ IRp to the new value θk+1. The convergence
of this process depends on the derivative matrix G with
elements

Gij =
∂Fi
∂θj

.

Ostrowski’s Theorem (Ortega and Rheinboldt, 1970) as-

serts that a stationary point θ̂ is a point of attraction of
the iterative process if the spectral radius ρ(G(θ̂)) is less

than one. In that case, ρ(G(θ̂)) is the ultimate rate of

convergence limk→∞ ‖θk+1 − θ̂‖/‖θk − θ̂‖.
The Newton-Raphson iteration to maximize a log-

likelihood function `(θ) can be defined by

θk+1 = θk − ῭−1 ˙̀

where ˙̀ is the gradient or score vector and ῭is the hessian.
Then θk+1 maximizes the quadratic expansion of ` at θk.
The method of scoring iteration

θk+1 = θk + I−1 ˙̀ (1)

replaces −῭by its expectation, the Fisher information ma-
trix I. Differentiating (1) at the maximum likelihood

estimate θ̂ gives the convergence matrix of the scoring
iteration as

G = I − I−1İI−1 ˙̀ + I−1 ῭

= I−1(῭+ I)

since ˙̀(θ̂) = 0. The eigenvalues of G are invariant under
reparametrization, which means that reparametrization
cannot change the ultimate rate of convergence of the
scoring iteration.

The log-likelihood kernel for a normal sample (ignoring
the variance) is

` = −1

2
(y − µ)T (y − µ)

so that
˙̀ = µ̇T (y − µ),

῭= −µ̇T µ̇ + µ̈T (y − µ)

and
I = µ̇T µ̇.

Here y is the vector of observations, µ is the vector of
fitted values, µ̇ is the n×p gradient matrix with elements

µ̇ij =
∂µi
∂θj

and µ̈ is a 3-dimensional array such that(
µ̈T (y − µ)

)
jk

=

n∑
i=1

∂2µi
∂θj∂θk

(yi − µi).

In this case maximum likelihood estimation is equivalent
to least squares, and the method of scoring is called the
Gauss-Newton algorithm. It has convergence matrix

G = (µ̇T µ̇)−1µ̈T (y − µ).

3 Geometry of Least Squares

The least squares problem consists of finding that point µ̂
on the response surface {µ(θ) : θ ∈ Θ} closest to y in n-
dimensional Euclidean space. An important role is played
by the tangent plane T = R(µ̇) to the response surface
at µ̂. It is clear that curvature in this situation means
curvature of the response surface. To quantify this we de-
fine our notion of curvature, and consider one-dimensional
curves on the response surface.

Let f be a function mapping IR into IRn. The range of f
then defines a one-dimensional curve in n-space. Consider
the limiting circle through the points f(α− ε), f(α) and
f(α + ε) as ε → 0. The normal curvature at α may be
defined to be the inverse radius of this limiting circle, and
can be calculated as

‖PN f̈‖
ḟT ḟ

where PN is the projection onto N = R(ḟ(α))⊥ (Jo-
hansen, 1984).

Now consider one-dimensional curves on the response
surface. Corresponding to any direction v ∈ IRp there
is a line θ(α) = θ̂ + αv from θ̂ in the parameter space,
and a lifted one-dimensional curve on the response surface
defined by µ(θ(α)). We have that

dµ

dα
= µ̇v

and
d2µ

dα2
= vT µ̈v.

Furthermore the projection of vT µ̈v onto R(µ̇v) is the
same as its projection onto R(µ̇). So the normal curva-
ture of the lifted curve is

κ(v) =
vTPN µ̈v

vT µ̇T µ̇v
(2)
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where PN is now the projection onto R(µ̇)⊥. (In the
terminology of differential geometry, PN µ̈ is the second
fundamental form of the response surface, the information
matrix µ̇T µ̇ being the first.) An essentially equivalent
derivation of (2) would have arisen had we defined the
one-dimensional curve as the intersection of R(µ̇v) with
the solution locus, that is as a normal cut. That approach
would exhibit κ as a function of the tangent direction µ̇v.
As a function of µ̇v, κ is a geometric invariant.

Now we return to the convergence matrix. The eigen-
values of G are the stationary values of the Rayleigh quo-
tient

q(v) =
vT µ̈T (y − µ)v

vT µ̇T µ̇v
. (3)

Let e = (y − µ)/‖y − µ‖, and let Pe be the projection
onto R(e). Then at the least squares estimate

q(v) =
‖vTPeµ̈v‖
vT µ̇T µ̇v

σ̂

Let λ1 < . . . < λp be the eigenvalues of G with eigenvec-
tors x1, . . . ,xp. We see that λi/σ̂ is the normal curvature

at α = 0 of the curve µ(θ̂ + αxi) imbedded in the space
spanned by µ̇ and e. We call the λi/σ̂ the normal curva-

tures of the solution locus at θ̂ relative to e.

4 The Convergence Matrix

From the form of G in the least squares case, we can
immediately explain the pattern of convergence behaviour
observed in the examples in the introduction:

(i) G is directly proportional to σ.

(ii) G→ 0 as n→∞. This can be seen from the expan-
sion

G =

(
1

n
µ̇T µ̇

)−1
1

n
µ̈T (y − µ)

in which 1
n µ̇

T µ̇ converges to a positive definite limit,

while 1
n µ̈

T (y − µ) converges to zero by the law of
large numbers.

In general, G → 0 under the same sort of conditions
that imply that θ̂ is consistent and asymptotically nor-
mal (see Jennrich, 1969). Consider the approximation,
resulting from a quadratic expansion of the log-likelihood,
which is usually used to establish the asymptotic distri-
bution of the maximum likelihood estimators

θ̂ − θ0 ≈ ῭(θ0)−1 ˙̀(θ0).

The standard result is to apply some form of the central
limit theorem to n−1/2 ˙̀, and some form of the law of large
numbers to 1

n
῭ to show that

1

n
(῭(θ0) + I(θ0))→ 0

and 1
nI has a nonsingular limit. Under these conditions,

G = I−1(῭+ I)→ 0.

5 Generalized Linear Models

Generalized linear models assume that the mean and vari-
ance structure of the observations are given by

g(µ) = Xβ

and

var(yi) = φv(µi)

where X is some regression matrix, g is the link function
and v is some variance function determined by the distri-
bution. The derivatives of the log-likelihood with respect
to β are

˙̀
β = XTdiag

(
1

φġv

)
(y − µ)

and

῭
β = −XTdiag

(
1

φġ2v

)
X

−XTdiag
((

g̈
ġ2vφ + v̇

ġv2φ

)
(yi − µi)

)
X

where v, g, ġ and g̈ are understood to be functions of µi.
The curvature matrix represents the size of the second
term of ῭

β relative to the first. If g is the canonical link
then the second term is exactly zero, which can be most
easily seen by substituting ġ = 1/v into ˙̀

β . This reflects
the fact that the scoring iteration for generalized linear
models with canonical link is quadratically convergent.

Some cancellation occurs in the curvature matrix for
the variance stabilizing link also (for example for the log-
link for the gamma distribution) for which ġ = 1/v1/2.
For such a link we have

῭
β = − 1

φ
XTX − 1

φ
XTdiag

(
v̇(yi − µi)

2v3/2

)
X.

6 Nested Iterations

Consider the problem of fitting the function

µ(t) = α1e
−β1t + α2e

−β2t

to data by least squares. The mean vector can be written

µ = A(β)α

where A is the n×p matrix function with elements Aij =
e−βjti , α = (α1, α2)T and β = (β1, β2)T . The sum of
squares

φ(α,β) = (y − µ)T (y − µ)

is maximized for fixed β by

α̂(β) = (ATA)−1ATy.

Substituting this into the sum of squares, gives the re-
duced object function

ψ(α̂(β),β) = yT (I − PA)y
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where PA is the orthogonal projection onto R(A), which
can be maximized with respect to β. This is an example of
separable regression in which the αi are linear parameters
and the βj are nonlinear.

In general, consider maximum likelihood estimation of
the partitioned parameter vector

θ =

(
θ1

θ2

)
and let θ̂1(θ2) maximize the likelihood for fixed θ2. Then
the Newton-Raphson iteration to maximize the reduced
likelihood `(θ̂1(θ2),θ2) with respect to θ2 is

θk+1
2 = θk2 − ῭−1

2.1
˙̀
2

with ῭
2.1 = ῭

2 − ῭
21

῭−1
11

῭
1 (Richards, 1961). Replacing −῭

with the Fisher information matrix I gives nested itera-
tions

θk+1
2 = θk2 + I−12.1

˙̀
2

with I2.1 = I2 − I21I−111 I12 (Smyth, 1985). The nested
iteration process has the convergence matrix

G = I−12.1(῭
2.1 + I2.1)

which has spectral radius not greater than that of the full
method of scoring applied to the full parameter vector
(Smyth, 1985). In effect, in separating out θ1 we have re-

stricted the relevant curvatures to the curve θ1 = θ̂1(θ2)
rather than having the consider to full response surface.

7 Expected Curvature

The concept of statistical curvature, as defined by Efron
(1975), Bates and Watts (1980), Amari (1985) and others,
is a property of a family of probability distributions rather
than a property of a particular observed data set. It cor-
responds to the question: before we observe the data, how
large should we expect ρ(G) to be, given the probability
model? We work with the symmetric curvature

B = I− 1
2 (῭+ I)I−T

2 ,

to which G is similar, and investigate the expected sizes
of its eigenvalues. There are at least two possibilities:

(i) The components Bij of B have expected value zero.
If we can calculate their expected squared sizes, that
is their variances, then we can calculate the expected
Frobenius norm

S2 = IE(‖B‖F ) =

p∑
i,j=1

IE(B2
ij)

which can in turn be used to bound the maximum
eigenvalue by

1

p
S2 ≤ IE(ρ2(B)) ≤ S2.

In many cases, S2 is a tight bound for ρ(G)2.

(ii) Under regularity conditions, the Bij are asymptoti-
cally normal with mean zero. Given the dispersion
matrix of vec(B) and assuming normality, one can in
principle write down the distribution of the eigenval-
ues of B as described by Muirhead (1982). Obtain-
ing a practically useful distribution for the maximum
eigenvalue is difficult however, so the approach is not
taken further in this paper.

Consider first the case of least squares. Hamilton,
Watts and Bates (1982) call

B = (µ̇T µ̇)−
1
2 µ̈(y − µ)(µ̇T µ̇)−

T
2

the effective residual curvature matrix, and show that its
eigenvalues can be used to obtain improved approxima-
tions to inference regions in nonlinear least squares. We
seek the expected squared sizes of its components Bij
given the fact that a particular value of θ is the least
squares estimate. Now θ will be the least squares es-
timate if y solves µ̇T (y − µ) = 0, and the conditional
distribution of y given this is N(µ, PNσ

2) where

PN = I − µ̇(µ̇T µ̇)−1µ̇T

is the projection matrix onto the linear space orthogonal
to µ̇. Under this distribution, the elements of B are nor-
mal, and the variances and covariances of its elements are
given by

IE(B⊗B) = (L−1⊗I)(I⊗L−1)µ̈TPN µ̈(I⊗L−T )(L−T⊗I)

where L is the Choleski factor satifying

µ̇T µ̇ = LLT .

The expected squared size of B in a particular direction
v is given by

IE(q(v)2) = σ2 ‖vTPN µ̈v‖2

(vT µ̇T µ̇v)2
= σ2κ2(v),

that is by the normal curvature in that direction. Except
for scaling, the κ(v) is the intrinsic curvature in the direc-
tion v of Bates and Watts (1980). Their relative intrinsic
curvature is

γ(v) = σp1/2κ(v).

They construct summary measures of (relative) instrinsic
curvature by maximizing or averaging over the possible
directions to obtain

Γ = max
v

γ(v)

and
γ2RMS = IEvγ

2(v),

the expectation being taken over v ∼ N(0, µ̇T µ̇−1). Since

max
v

IE(q(v)2) ≤ IE(max
v

q(v)2)

we have that

1

p
γ2RMS ≤

1

p
Γ2 ≤ IE(ρ(B)2).

281



Table 3: Maximum intrinsic curvature, and the extreme
eigenvalues and spectral radius of the convergence matrix,
for 18 data sets.

Data set Γ λ1(B) λp(B) ρ(B)

1 .03 −.00 .00 .00
2 .06 −.00 .00 .00
3 .08 −.17 .00 .17
4 .07 −.10 .00 .10
5 .21 −.00 .10 .10
9 .18 −.06 .02 .06

13 .01 −.00 .00 .00
14 .15 −.00 .08 .08
15 .04 −.04 .00 .04
16 .04 −.00 .02 .02
17 .25 −.00 .15 .15
18 .00 −.00 .00 .00
19 .02 −.02 .00 .02
20 .02 −.06 .00 .06
21 .90 −.06 .26 .26
22 .08 −.19 .00 .19
23 .09 −.02 .10 .10
24 .37 −.04 .10 .10

One might use Γ2 itself as a conservative estimate of
IE(ρ(B)2), a relationship which seems credible from Ta-
ble 3. (Table 3 was constructed from tables in Bates and
Watts (1980) and Hamilton, Watts and Bates (1982).) It
does not seem possible to relate the Bates and Watts sum-
mary measures of curvature to the size of the convergence
matrix more closely than this. Bates and Watts (1980)
themselves compare Γ2 with 1/F (p, n−p; .95), which can
be seen to be quite conservative from a convergence point
of view.

8 A Numerical Example

Suppose that observations are independent and normally
distributed with means

µ(t) = αe−βt

for times t1, . . . , tn equally spaced on the unit interval,
and constant variance σ2. The function µ(t) has partial
derivatives

µ̇α = e−βt

µ̇β = −tαe−βt

µ̈α = 0

µ̈αβ = −te−βt

µ̈β = t2αe−βt,

which shows that µ̈β is the only second derivative which
in not linearly dependent on the first derivatives. Because
of this, the matrix µ̈PN µ̈ has just one non-zero element.

For n = 8 and α = β = σ = 1 we have

µ̈PN µ̈ =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 .01312


and IE(‖B‖2F ) = .4207. For these parameter values, con-
vergence will be a problem even very close to the least
squares estimate a significant proportion of the time. The
expected Frobenius norm depends on α and β in the fol-
lowing way:

β\α .50 1.00 2.00

.50 .76 .26 .16
1.00 1.34 .42 .21
2.00 4.16 1.18 .46

We see that the curvature decreases with α but increases
with β — that is, it decreases with the signal to noise
ratio. Returning to α = β = 1, the following picture
displays (squared) curvatures in particular directions,

&%
'$

.3089

.4207
.3041

.0086

.0095

the directions being in terms of d = (µ̇T µ̇)1/2v. In this
case the maximum curvature Γ2 is equal to the expected
Frobenius norm, because B has only one nonzero eigen-
value.

9 Statistical Curvature

In a seminal paper, Efron (1975) defined statistical cur-
vature γ for one parameter probability families, to be

γ2 =
var(῭| ˙̀)
I2

where

῭| ˙̀ = ῭− cov( ˙̀, ῭)

var( ˙̀)
˙̀

is the log-likelihood hessian ῭ corrected for linear regres-
sion on the first derivative ˙̀. One motivation for the def-
inition is that the statistical curvature of one parameter
curved exponential families with log-densities

θ(α)Ty − ψ(θ) + f(y)

where θ is an n-dimensional function of the scalar param-
eter α, is the ordinary normal curvature of the function
θ(·) relative the the inner product defined by the covari-
ance matrix of y.
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Efron (1975) demonstrated the relevance of γ2 to sec-
ond order efficiency and other aspects of statistical infer-
ence. In particular, the variance of a bias-corrected max-
imum likelihood estimate can be written as the Cramèr-
Rao lower bound plus a term that depends in γ plus the
Bhattacharyya correction or naming curvature plus terms
of O(1/n3). The Cramér-Rao term is O(1/n) while the
second two are O(1/n2). Intuitively, γ2/I is the amount
of information lost when summarizing the data with the
maximum likelihood estimate α̂. Reeds (1975) and Dawid
(1975) suggested generalizations to multi-parameter mod-
els, which have been taken further by Amari (1982, 1985).

From the point of view of convergence, we need to know
the expected (squared) size of the symmetric convergence
matrix

B = I−1/2(῭+ I)I−T/2.

So let γij,kl be the covariance between the components
Bij and Bkl of B, taken over the conditional distribution

of ῭corrected for linear regression on ˙̀. Then the O(1/n2)
correction due to statistical curvature to the variance of
the maximum likelihood estimator is given by the positive
definite matrix A, with components

Amn =

p∑
j,k=1

Ijkγij,kl

where the Ijk are the components of I−1 (Reeds, 1975).
Asymptotically, ῭ and ˙̀ are normally distributed, so that
the distribution of ῭ corrected for linear regression on ˙̀

is asymptotically the conditional distribution of ῭ given
˙̀. Since the maximum likelihood estimate satisfies ˙̀ = 0,
we are effectively taking expections conditional on the
maximum likelihood estimate being a specified value.

This γ is a natural generalization of Efron (1975)’s
one-dimensional measure of statistical curvature, and
is essentially equivalent to the exponential curvature of
Amari (1985). It holds all the second order information
about the expected size of the convergence matrix for the
method of scoring. In particular, the expected Frobenius
norm is

IE῭| ˙̀(‖B‖F ) =

p∑
ij

γii,jj

which can be used to bound the expected squared spectral
radius.
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