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Abstract

Motivation. Spotted arrays are often printed with probes
in duplicate or triplicate, but current methods for assess-
ing differential expression are not able to make full use of
the resulting information. Usual practice is to average the
duplicate or triplicate results for each probe before assess-
ing differential expression. This loses valuable information
about gene-wise variability.

Results. A method is proposed for extracting more in-
formation from within-array replicate spots in microarray
experiments by estimating the strength of the correlation
between them. The method involves fitting separate linear
models to the expression data for each gene but with a com-
mon value for the between-replicate correlation. The method
greatly improves the precision with which the genewise vari-
ances are estimated and thereby improves inference meth-
ods designed to identify differentially expressed genes. The
method may be combined with empirical Bayes methods
for moderating the genewise variances between genes. The
method is validated using data from a microarray experi-
ment involving calibration and ratio control spots in conjunc-
tion with spiked-in RNA. Comparing results for calibration
and ratio control spots shows that the common correlation
method results in substantially better discrimination of dif-
ferentially expressed genes from those which are not. The
spike-in experiment also confirms that the results may be
further improved by empirical Bayes smoothing of the vari-
ances when the sample size is small.

Availability. The methodology is implemented in the
limma software package for R, available from the CRAN
repository http://www.r-project.org.

∗Bioinformatics 21 no. 9, 2005, pages 2067–2075.

1 Introduction

Microarrays measure the mRNA expression of tens of thou-
sands of genes in a single hybridization experiment. Designed
experiments involving two or more microarrays hybridized
with RNA from different sources generate expression pro-
files which can help classify the genes according to functional
groups or molecular pathways. Although much attention has
been given to the statistical analysis of microarray data many
problems are still unresolved (Nguyen et al., 2002; Smyth
et al., 2003; Parmigiani et al., 2003; Speed, 2003; Causton
et al., 2003; Firestein and Pisetsky, 2002; Tilstone, 2003).
Particular challenges and opportunities arise from the mul-
tiplicity of genes and the possibilities for parallel inference.

A standard analysis method is to fit the same statistical
model separately to the expression measurements for each
gene (Wolfinger et al., 2001; Yang and Speed, 2003). A num-
ber of authors have noted that inference for each individual
gene can be made more reliable by making use of informa-
tion generated from the whole ensemble of genes (Newton
et al., 2001; Tusher et al., 2001; Efron et al., 2001; Efron and
Tibshirani, 2002; Lönnstedt and Speed, 2002; Kendziorski
et al., 2003; Newton et al., 2004; Smyth, 2004). Such meth-
ods have not as yet been applied to experimental designs in
which there are technical or biological replicates leading to
multiple strata of random variation for each gene. This arti-
cle develops a between-gene moderation method appropriate
for a particular type of technical replication, that of within-
array replicate spots. The method proposed is particularly
simple in that a suitably chosen parameter is constrained
to be common between the genes. The treatment proposed
here for within-array replicates may be combined with mod-
eration methods designed for a single error strata.

Spotted microarrays are produced by printing cDNA or
oligonucleotide sequences on glass slides using a robotic
printer. The spots are laid down using a printhead made
up of capillary print tips or pins or inkjets. The DNA is pre-
pared in 96-well or 384-well plates ready for printing, nor-
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mally one well for each distinct probe. The robot acquires
DNA by dipping the tips of the print head into the wells
of the plate before depositing the DNA on the glass slide.
In most cases only a small proportion of the DNA in each
well is actually printed onto the arrays and any excess is dis-
carded. Provided that there is space on the array, there is
no cost, apart from printing time, in printing two or more
spots on the arrays from each well. This is accomplished
by programming the robotic printer to dip the print head
more than once into the same set of wells. This results in a
printed array in which each gene appears two or more times
a fixed distance apart. Usually multiple printing produces
two spots of each gene but an arbitrarily large number of
replicate spots may be printed if there is sufficient space to
accommodate them on the arrays.

Normally the replicate spots are printed side-by-side on
the same row or side-by-side on the same column or on the
top and bottom halves of the array. Any intensity or log-
ratio measurements made from the replicate spots will be
positively correlated through being observed on the same ar-
ray. Replicate spots which are side-by-side are likely to be
very highly correlated since not only are they printed with
the same gene but are spatially close together and therefore
likely to share many common causes including local effects
on the array surfaces as well as hybridization and labelling
effects. Indeed the value of having multiple prints of each
clone on an array has often been questioned given the low
within-array variability compared to between array variabil-
ity (Tran et al., 2002). Replicate spots in the top and bottom
halves of the array are also likely to be positively correlated
but less so than side-by-side replicates.

Replicate spots are often used as a quality assessment tool
since disagreement between replicates is strong evidence that
at least one of the spots is affected by a local artifact. Re-
peatability of the log-ratios across replicate spots within ar-
rays can be used as a basis for removing outlier spots (Tseng
et al., 2001; Hoffmann et al., 2002; Yang et al., 2002; Jenssen
et al., 2002; Lyne et al., 2003; König et al., 2004), to construct
spot quality measures (Beissbarth et al., 2000) or to evaluate
the effectiveness of a spot quality scheme (Wang et al., 2001).
It is almost universal practice to average the log-intensities or
log-ratios obtained from within-array replicate spots before
conducting formal statistical analysis of differential expres-
sion (Andrews et al., 2000; Tseng et al., 2001; Berwanger
et al., 2002; Hoffmann et al., 2002; Yang et al., 2002; Kay-
nak et al., 2003; Lyne et al., 2003), although averaging can
cause complications when some of the log-ratios are miss-
ing or when there are spot-specific quality weights. Many
public microarray database programs, such as the Stanford
Microarray Database, automatically average log-ratios from
duplicate spots. A relatively small number of studies have
used with-array replicate level information to improve the
assessment of differential expression (Baggerly et al., 2001;

Boer et al., 2001; Fan et al., 2004).

The method developed in this paper extracts more infor-
mation from the within-array replicate spots by estimating
the correlation between them. A simple model is explored
in which the between-replicate correlation is taken to be
constant across genes. The method uses a consensus esti-
mator of the correlation across genes in such a way that
the correlation can be taken to be known at the individual
gene level. Compared with simply averaging replicate spots,
this method greatly improves the precision with which the
genewise variances are estimated and thereby improves in-
ference methods designed to identify differentially expressed
genes.

The method is validated using data from a microarray
experiment involving calibration and ratio control spots in
conjunction with spiked-in RNA. Comparing results for cal-
ibration and ratio control spots shows that the within-array
correlation method results in substantially better discrimi-
nation of differentially expressed genes from those which are
not compared with simply averaging the replicate spots. On
this data the proposed method increases power to detect dif-
ferential expression when it is present without incurring a
greater rate of Type I errors when it is not.

2 cDNA Microarray Preparation
Methods

2.1 Spike-in Control Spots

This paper uses data from a set of 26 cDNA microarrays
which were printed and hybridized as part of a study on
human transcription factors. The paper presents data only
from the spike-in control spots.

The arrays were printed at the Australian Genome Re-
search Facility with the Hs8k cDNA clone library from Re-
search Genetics and a selection of control spots. Each array
was printed with twelve sets of the Lucidea Universal Score-
card system (Amersham). Spots were printed in duplicate,
side-by-side by rows, including the twelve sets of ScoreCard
spots.

The RNA samples hybridized to the arrays included Score-
Card spike mixes according to the Lucidea ScoreCard User’s
Guide. The ScoreCard system includes calibration and ra-
tio control spots designed to generate pre-determined fold
changes. Each set of ScoreCard spots includes ten calibra-
tion spots labeled here Calib1 to Calib10 which have the-
oretical fold change one and are expressed at successively
decreasing intensities. The ratio controls have fold changes
as follows: three fold up and down at low intensity (3UL
and 3DL), three fold up and down at high intensity (3UH
and 3DH), ten fold up and down at low intensity (10UL and
10DL) and ten fold up and down at high intensity (10UH

2



and 10DH). The same spike mix was applied to all the ar-
rays, so the arrays can be treated as a set of replicate arrays
for the purposes of the ScoreCard spots.

2.2 Hybridization

50µg of total RNA extracted from HeLa cells and 1µl of ei-
ther reference or test spike mRNA was reverse transcribed
using an anchored oligo(dT) primer and 200 units of Su-
perscript II reverse transcriptase (Invitrogen) in the pres-
ence of 25mM dATP, 25mM dCTP, 25mM dGTP, 15mM
aminoallyl-dUTP (SIGMA #A0410) and 10mM dTTP. The
single strand cDNA was purified using QIAquick PCR purifi-
cation kit (Qiagen) and labelled with CyDye post-labelling
dye (Amersham) for an hour. After a second purification as
above, both Cy-5 and Cy-3 labelled cDNAs were pooled and
mixed to 25µg of human Cot1 DNA, 38µg of polyA DNA and
50µg of salmon sperm DNA. The mixture was concentrated
using a vacuum dryer and resuspended in 50% formamide,
5x SSC and 0.1% SDS.

The arrays were incubated in 50% formamide, 5x SSC,
0.1% SDS and 10mg/ml BSA for 45 minutes at 42◦C, rinsed
with distilled water and dried using an air gun. The la-
belled cDNA mixture was denatured at 95C for 5 minutes,
incubated at 45◦C for 30 minutes and cooled to room tem-
perature before being pipetted onto the array. The slides
were incubated overnight at 42◦C in hybridisation chamber
(Corning) placed in a water bath. After incubation the slides
were washed in 1x SSC/0.2% SDS solution for 5 minutes, in
0.1xSSC/0.2%SDS solution for 5 minutes, and twice in 0.1X
SSC for 2 minutes. The slides were then spun dry using a
centrifuge.

2.3 Image Analysis and Normalization

The arrays were scanned using a Genepix 4000B scanner
with adjusted settings in order to obtain a similar green and
red overall intensity. The images were analysed using the
SPOT software (Buckley, 2000). Foreground intensities were
background corrected using the ‘morph’ background mea-
sure and the scorecard spot log-ratios were normalized using
global loess normalization with the default smoothing span
of 0.3 (Yang et al., 2001; Smyth and Speed, 2003).

3 The Balanced Single Sample
Problem

3.1 Individual correlations

For simplicity, consider first a series of n replicate two-color
microarray experiments, each array hybridized with RNA
from the same two sources. Suppose that each gene is repli-
cated m times on each array at a fixed distance apart. Im-

age analysis and normalization of the microarray data will
yield a log-ratio of expression ygij for each spot. Here ygij
is the log-ratio for gene g = 1, . . . , G, array i = 1, . . . , n and
replicate j = 1, . . . ,m. Usually ygij is a normalized version
of log2(Rgij/Ggij) where Rgij is the measured red intensity
while Ggij is the measured green intensity for that spot. As-
sume that

E(ygij) = µg

where µg is the true log-ratio of the expression levels for gene
g. Interest lies in estimating µg and especially in testing
H0 : µg = 0.

It is reasonable to assume that observations made on dif-
ferent arrays for a given gene are independent or nearly so.
On the other hand, replicate observations made on the same
array are likely to be correlated, perhaps highly so. For the
remainder of this article, the term ‘replicate spots’ will be
taken to refer to spots on the same array. Let ρg, be the cor-
relation between replicate spots for gene g. We will assume
that

var(ygij) = σ2
g

and

cor(ygij , ygij′) = ρg

for j 6= j′. Observations with different i are assumed inde-
pendent. Observations on different genes on the same array
are also likely to be correlated. The correlations between
genes however are highly problematic to estimate, because
of the very large number of genes compared to the number of
arrays, and so these correlations are left unspecified in this
article. If the replicate spots are close together we expect
ρg to be large, perhaps close to unity. If the replicate spots
are far apart, the correlation will be much smaller. Note
that ρg is constrained according to −1/(m − 1) ≤ ρg ≤ 1
by the requirement that the covariance matrix of the ygij be
non-negative definite.

It will be further assumed in this article that the ygij are
normally distributed. Although this assumption will be used
in deriving specific results in this article, most of the results
of this article do not depend on normality for their usefulness.
See further comments on this issue in the discussion section.

For each gene g write ȳgi for the sample mean of the repli-
cate observations on array i and ȳg for the overall sample
mean across all arrays. For each gene let sBg be the between-
arrays standard deviation,

(sBg )2 =
m

n− 1

n∑
i=1

(ȳgi − ȳg)2

and sWg be the within-arrays standard deviation,

(sWg )2 =
1

n(m− 1)

n∑
i=1

m∑
j=1

(ygij − ȳgi)2.
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Then ȳg, sBg and sWg are mutually independent and sufficient
for µg, σg and ρg with

ȳg ∼ N

(
µg,

σ2
g

nm
{1 + (m− 1)ρg}

)

(sBg )2 ∼ σ2
g{1 + (m− 1)ρg}

χ2
n−1

n− 1

(sWg )2 ∼ σ2
g{1− ρg}

χ2
n(m−1)

n(m− 1)

Under this model, inference about µg can be conducted en-
tirely using ȳg and sBg . The within standard deviation sWg
does not contribute any further information. The maximum
likelihood estimator of µg is

µ̂g = ȳg

and the most powerful test statistic for testing H0 : µg = 0
is

tg =
ȳg

sBg /
√
nm

. (1)

If µg = 0 then t ∼ tn−1. This explains why it is usual practice
to average the replicate spots before undertaking inference
for microarrays with within-array replication.

It is useful for later reference to consider the estimation
of ρg even though it does not contribute here to inference
about µg. Let

θg =
1

2
log

(
1 + (m− 1)ρg

1− ρg

)
.

Note that θg is a monotonic increasing transformation of ρg
which takes values on the whole real line. The transforma-
tion is reversed by

ρg =
exp(2θg)− 1

exp(2θg) +m− 1

which reduces to ρg = tanh θg when m = 2. The residual
maximum likelihood (REML) (Searle et al., 1992) estimator
of θg is

θ̂g = log(sBg /s
W
g )

which is distributed as θg + 1
2 logFn−1,n(m−1). This shows

that
E(θ̂g) = θg + b(n− 1, n{m− 1})

where the bias is determined by the function

b(f1, f2) =
1

2

{
ψ

(
f1
2

)
− log

(
f1
2

)
− ψ

(
f2
2

)
+ log

(
f2
2

)}
where ψ is the digamma function. The variance is

var(θ̂g) = v(n− 1, n{m− 1})

with

v(f1, f2) =
1

4

{
ψ̇

(
f1
2

)
+ ψ̇

(
f2
2

)}
where ψ̇ is the trigamma function. The distribution of θ̂g is
somewhat skew to the left because of the differing degrees of
freedom for sBg and sWg . In the worst case with n = m = 2

the bias of θ̂g is −0.35.

3.2 Common correlation

Now we make the simplifying assumption that the between-
replicate correlation is common across genes, ρg = ρ for all
g. This assumption is motivated by the belief that the cor-
relation springs mainly from the physical proximity of the
replicate spots on the same array. The robotic printing en-
sures that the spacing between the replicate spots is the same
for all genes and all arrays. In practice it will not be neces-
sary that the assumption be precisely true but rather that
the correlations be sufficiently stable to make the common
correlation model a useful one. This is likely to be true when
the between and within standard deviations sBg and sWg are
positively associated across genes, meaning that the corre-
lations are much more stable than the variances. This has
been true in all microarray experiments seen by the authors
so far.

Let

θ =
1

2
log

(
1 + (m− 1)ρ

1− ρ

)
.

If observations on different genes were independent then the
REML estimator of θ would be

θ̂ =
1

2
log

{∑G
g=1(sBg )2∑G
g=1(sWg )2

}
(2)

which would be distributed as θ + 1
2 logFG(n−1),Gn(m−1).

This estimator remains consistent as n → ∞ even if the
genes are not independent because it requires only that the
mean of the (sBg )2 and the mean of the (sWg )2 converge to
quantities in the ratio of 1 + (m− 1)ρ to 1− ρ. For the same
reasons it requires only weak assumptions on the dependence
between genes to be consistent as G → ∞. In practice this
estimator is likely to be very accurate if the number of genes
G is large. Under the assumption of independence between
genes, the bias is

b(G{n− 1}, Gn{m− 1})

and the variance is

var(θ̂g) = v(G{n− 1}, Gn{m− 1})

both of which are very small when G is large. For example
if G = 1000 and n = m = 2 the above bias is minimal at
−0.00025 while the standard deviation is 0.016.
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The fact that the correlation is common between genes
does not change the estimator µ̂g for each gene but does
change substantially inference about σ2

g . Because the com-
mon correlation can be estimated very accurately from the
ensemble of genes, ρ may be treated as known to a very
good approximation when undertaking inference about each
individual gene. This means that sWg can contribute to the
estimator of σ2

g , improving the precision with which we judge
whether µg is nonzero. The REML estimator of σ2

g is approx-
imately

s2g =
1

nm− 1

{
(n− 1)(sBg )2

1 + (m− 1)ρ̂
+
n(m− 1)(sWg )2

1− ρ̂

}
(3)

which is approximately distributed as σ2χ2
nm−1/(nm − 1).

The test statistic for testing H0 : µg = 0 now becomes

tg =
ȳg

sg[{1 + (m− 1)ρ̂}/(nm)]1/2
(4)

and this follows a tnm−1 distribution under the null hypoth-
esis. The number of degrees of freedom associated with the
test statistic is more than doubled compared with Section 3.1
even in the most conservative case when there are m = 2
within-array replicates.

4 Results for Balanced linear mod-
els

Section 3 considered only replicate arrays comparing two
RNA sources. The results of Section 3 generalize easily to
arbitrarily complicated microarray experiments comparing
two or more RNA sources. Let yg be the vector containing
the nm log-ratios or log-intensities observed for gene g. A
general microarray experiment can be represented by a linear
model

E(yg) = Xβg

where X is a known nm×k dimensional design matrix spec-
ifying the experimental design and βg is a vector of k regres-
sion coefficients (Yang and Speed, 2003; Smyth, 2004). In the
order for the linear model to be identifiable we assume that
k < n and that the matrix X is of full column rank. When
there are m replicates of each gene on each array, there will
be m repeated rows of the design matrix X corresponding
to each set of m replicate spots. The covariance matrix is

var(yg) = σ2
gRg

where Rg is the block diagonal matrix with n blocks equal
to the m×m correlation matrix

1 ρg · · · ρg
ρg 1 · · · ρg
...

...
. . .

...
ρg · · · ρg 1



Let αg = cTβg, where c is a vector of known constants,
be a particular contrast or linear combination of the re-
gression coefficients and suppose that interest lies in test-
ing H0 : αg = 0. This formulation is sufficiently general
to accommodate a wide variety of microarray experiments
including dye-swaps, time course experiments and factorial
experiments. It is also applicable to single-channel microar-
ray experiments for which ygij is a normalized version of
log2 Igij where Igij is the measured intensity for that spot.

Generalizing from replicate arrays to the linear model
causes little extra complication for the theory of Section 2.
Let ȳg be the n-vector of array means ȳgi and let X̄ be the
reduced n × k dimensional design matrix in which there is
only one row instead of m rows for each gene by array com-
bination. Then

E(ȳg) = X̄βg (5)

To generalize the results of Section 2.2, we simply generalize
the between-arrays standard deviation sBg to be m times the
residual standard error which arises from fitting the linear
model (5). This mean square is now on n − k instead of

n − 1 degrees of freedom. Let β̂g be the estimator of βg

from fitting this model and write α̂g = cT β̂g. The estimate

β̂g from the reduced linear model (5) is the same as that
from the full linear model for yg. Note that

var α̂g = σ2
g u

2
g

with

u2g = cT
(
XTR−1g X

)−1
c =

1 + (m− 1)ρg
m

cT
(
X̄T X̄

)−1
c

The t-statistic (1) arising from the individual correlation
model is now

tg =
α̂g

sBg ug

which is on n− k degrees of freedom.
Assuming now that ρg = ρ, the common correlation esti-

mator (2) would now be distributed as θ+ 1
2 logFG(n−k),Gmn

if the genes were independent. The pooled variance estima-
tor (3) now becomes

s2g =
1

nm− k

{
(n− k)(sBg )2

1 + (m− 1)ρ̂
+
n(m− 1)(sWg )2

1− ρ̂

}

which is on mn − k degrees of freedom. The t-statistic (4)
now becomes

tg =
α̂g

sg u

on mn−k degrees of freedom and is used to test H0 : αg = 0.
It can be seen that the relative difference in degrees of free-

dom between sBg and sWg can be large if k is larger than one
and especially if k is not much smaller than n. This means
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that the gain in degrees of freedom of sg over sBg which results
from assuming common correlations is especially important
for larger values of k, i.e., for designed experiments involving
a larger number of distinct RNA sources to be compared.

5 Results for Unbalanced models

Suppose that now there are spot-specific weights wgij asso-
ciated with the observations so that

var ygij = σ2
g/wgij

The weights may arise from quality assessment or quality
filtering of the spots (Smyth and Speed, 2003). In general
the weights are non-negative but may be permitted to take
value zero corresponding to log-ratios or log-intensities which
are missing. The linear model is as before

E(yg) = Xβg

but the covariance matrix is now

var(y) = σ2
g diag(w

−1/2
gij )Rg diag(w

−1/2
gij ).

Unlike in Section 3 the estimator β̂g of βg is now some-
what dependent on the estimated value for ρg. This pro-
duces an unbalanced statistical model in which there are no
non-iterative formulae for the REML estimators of σg or ρg.
On the other hand, iterative computational procedures are
readily available to compute the numerical REML estimates
σ̂g and ρ̂g for any given data set (Pinheiro and Bates, 2000).

Assume now that ρg = ρ. Even assuming independence
between the genes, exact REML estimation of the common
correlation would require iterative computation using the en-
tire data set. This is at best very unattractive computation-
ally and would in most cases involve prohibitive memory
storage requirements. An alternative and much easier strat-
egy is to estimate the common correlation ρ by combining
the individual correlation estimators ρ̂g. The fact that this
estimation method is not fully efficient is not important when
the number of genes is large. Let

θ̂g =
1

2
log

{
1 + (m− 1)ρ̂g

1− ρ̂g

}
where ρ̂g is the REML estimator of ρg from the data for gene
g. By analogy with the balanced case we can conclude that

E(θ̂g) ≈ θ + b(dBg , d
W
g )

where dBg is the between array degrees of freedom and dWg is
the within array degrees of freedom for gene g. A combined
estimator of θ is

θ̄ =
1

G

G∑
g=1

{
θ̂g − b(dBg , dWg )

}

This estimator is consistent for θ as n → ∞ regardless of
the dependence structure between the genes and is consis-
tent as G → ∞ given weak assumptions on the dependence
structure. The estimator of ρ is recovered by

ρ̂ =
exp(2θ̄)− 1

exp(2θ̄) +m− 1
.

Having estimated the common correlation, the regression
coefficients β̂g can be estimated by weighted least squares of
yg on X with weight matrix

Wg = diag
(
w

1/2
gij

)
R̂−1 diag

(
w

1/2
gij

)
where R̂ is equal to Rg with ρ̂ substituted for ρg. The
weighted least squares estimator is

β̂g = (XTWgX)−1XTWgyg

and the approximate REML estimator of σ2
g is the residual

variance

s2g =
1

nm− k
(yg −Xβ̂g)TWg (yg −Xβ̂g).

The test statistic for testing H0 : α = 0 is

tg =
α̂g

sgug

where

u2g = cT (XTWgX)−1c

is the unscaled variance of α̂. The t-statistic is on nm − k
degrees of freedom. If wgij = 1 then s2g and tg reduce to the
same forms as in the balanced case in Section 3 apart from
differences in the estimation of ρ, specifically the replacement
of θ̂ with θ̄.

Note that the t-statistic tg is not sensitive to small changes
in the correlation correlation ρ̂, since the estimated residual
variance s2g will tend to compensate. This reasures us that
the common correlation model will not lead to misleading
results if it fails to be exactly correct for some genes.

The efficiency of θ̄ relative to the REML estimator can
be computed for the balanced case under the assumption
of independence between genes. When G = 1000 and n =
m = 2, the standard deviation is of θ̄ is 0.029 showing that
its relative efficiency compared to the REML estimator is
about 30%. This is the worst case; efficiency increases with
the number of arrays. For example the efficiency is 70% if
there are n = 6 arrays. For the purposes of the methodology
of this paper, these are acceptable efficiencies.
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6 Combining with Empirical Bayes
Moderation

A number of authors have shown that one can improve on the
use of t-statistics for assessing differential expression in mi-
croarray experiments by using appropriate shrinkage meth-
ods to moderate the genewise sample variances (Tusher et al.,
2001; Baldi and Long, 2001; Efron et al., 2001; Lönnstedt and
Speed, 2002; Broberg, 2003; Smyth, 2004). We show here
that the empirical Bayes method of Smyth (2004) combines
in a natural way with the methods of this paper.

In the separate correlation model of Section 2.1, an in-
verse Gamma prior would be applied to the between-array
variances σ2

g{1 + (m− 1)ρg} yielding posterior variances

(s̃Bg )2 =
(n− 1)(sBg )2 + d0(sB0 )2

n− 1 + d0

where (sB0 )2 is the prior value and d0 the prior degrees of
freedom. Replacing the sample variance in (1) with the pos-
terior variance produces the moderated t-statistic

t̃g =
ȳg

s̃Bg /
√
nm

which follows a t-distribution on n−1+d0 degrees of freedom
if µg = 0 (Smyth, 2004). In the common correlation model
of Section 2.2 an inverse Gamma prior would be applied to
σ2
g yielding posterior variances

s̃2g =
(nm− 1)s2g + d0s

2
0

nm− 1 + d0
.

Replacing the sample variance in (4) with the posterior vari-
ance produces the moderated t-statistic

t̃g =
ȳg

s̃g[{1 + (m− 1)ρ̂}/(nm)]1/2

which is t-distributed on nm − 1 + d0 degrees of freedom if
µg = 0. The same technique could be applied to the indi-
vidual and common correlation models of Sections 3 and 4.
In Section 4 an inverse Gamma prior for σ2

g would lead to
posterior variances

s̃2g =
(nm− k)s2g + d0s

2
0

nm− k + d0

and to moderated t-statistics

t̃g =
α̂g

s̃gug

on nm − k + d0 degrees of freedom. The use of empirical
Bayes results in effect in a further d0 degrees of freedom for
the estimation of the genewise sample variances, where d0 is

estimated from the data. The common correlation method-
ology proposed in this paper and the use of empirical Bayes
to smooth the variances are complementary techniques in
the sense that using both techniques together results in the
greatest possible increase in the effective degrees of freedom
for estimating the variances.

Note that empirical Bayes smoothing could in principle
be applied to the correlations as well as the variances. In
fact, smoothing the between and within variances (sBg )2 and

(sWg )2 independently leads immediately to smoothed corre-
lation estimators from

θ̃g = log(s̃Bg /s̃
W
g ).

This however turns out to be equivalent to averaging the log-
ratios over replicate spots and then applying smoothing to
the variances, i.e., empirical Bayes smoothing of the correla-
tions does not add more information over that of smoothing
the variances alone. So it appears that to get an extra ben-
efit it is necessary to smooth the correlations to a greater
degree than the variances, e.g., by setting them equal as in
this paper.

7 Results with Spike-in Data

The methodology is demonstrated on a set of 26 microarrays
for which the differential expression status of a set of control
spots is known. Figure 1 shows boxplots of t-statistics for the
scorecard series of control spots. There are twelve t-statistics
in each box. The grey filled boxplots, on the left of each
pair of boxplots, show statistics computed using common
correlations while the white boxplots on the right of each pair
show statistics computed by averaging the duplicate spots.

The t-statistics produced by averaging the duplicate spots
are on fewer degrees of freedom that those produced by the
common correlation method, meaning that they are not di-
rectly comparable on the basis of magnitudes alone. One way
to compare the t-statistics would be to compute p-values.
The vertical axis in the plot actually shows z-score equiv-
alents of the t-statistics, i.e., the standard normal deviate
which has the same p-value as has the t-statistic. The z-
scores puts t-statistics with different degrees of freedom on
the same scale. Comparing z-scores is equivalent to compar-
ing p-values but the z-scores are better suited to graphical
presentation.

A ideal test statistic will show z-score values which are
randomly distributed about zero with as little variability as
possible for the calibration spots and z-scores as far from
zero as possible for the ratio controls. The better the separa-
tion between the calibration values and the ratio values, the
better the performance of the statistic. The plot shows that
the t-statistics computed assuming common correlations give
much larger absolute z-scores for the differentially expressed
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genes while maintaining a similar null distribution for the
non-differentially expressed spots. This shows that the com-
mon correlation t-statistics have greater power for detecting
differential expression while producing no more false posi-
tives on average.

The right panel of Figure 1 shows the results with empir-
ical Bayes smoothing of the sample variations while the left
panel shows results with ordinary t-statistics. The relatively
large number of arrays here means that the sample variances
are fairly reliable so that use of empirical Bayes changes the
picture only slightly.

The minimum number of arrays for which t-statistics can
be computed is two, this being the minumum number to re-
turn a degree of freedom for error when the duplicate spot
values are averaged. In order to examine this extreme sit-
uation, we separated the 26 arrays into 13 pairs of arrays
and computed t-statistics for each pair. Figure 2 shows the
results. Each boxplot in Figure 2 represents 156 values, i.e.,
twelve values for each of the thirteen pairs. The fact that
t-statistics are computed from only two arrays instead of
all 26 means that they are less able to distinguish which
spots are differentially expressed, however the t-statistics us-
ing common correlations do markedly better. As before, the
common correlation t-statistics have greater power to detect
differential expression while having a similar null distribu-
tion (Figure 2, left panel). The relative gain of the common
correlation method compared with averaging the duplicate
spots is perhaps even greater here with n = 2 than with the
larger sample size.

With only two arrays for each t-statistic, the sample vari-
ances are rather unreliably estimated. When the duplicate
spots are averaged, the sample variances have in fact only one
degree of freedom. In this situation, empirical Bayes smooth-
ing can be expected to make a large impact on the reliability
of the statistics. The right panel of Figure 2 shows the same
results as the left but with empirical Bayes smoothing of the
variances. The empirical Bayes method greatly improves the
performance of both statistics, with and without common
correlations, and the separation of calibration and ratio val-
ues is improved relative to the left panel. The comparison be-
tween common and individual correlations is no longer clear
cut because the z-scores for ratio controls without common
correlations are so variable, sometimes larger and sometimes
smaller than the statistics with common correlations. The
important observation here is that the common correlation
(white) boxes are noticeably more compact than the grey
boxes for all intensities of calibration spots, i.e., the rate of
false discoveries is reduced. Furthermore, assuming common
correlations also gives larger median z-scores for all types of
ratio controls except for 10DL, meaning that the common
correlation method gives greater power in most cases as well
as better control of type I errors.

8 Discussion

This paper shows that setting the between-replicate correla-
tion constant across genes is a useful strategy. Results using
spike-in probes show that the statistics assuming common
correlations give clearly improved assessment of differential
expression. Any bias which is introduced by assuming cor-
relations to be equal seems to be more than offset by an in-
crease in the precision with which the genewise variances are
estimated. When the number of arrays is small, the spike-
in results were further by empirical Bayes smoothing of the
sample variances as in Smyth (2004).

The authors have applied the methodology to a variety of
microarray experiments with arrays printed in several differ-
ent laboratories with several different clone libraries. Our
experience has been that correlations between side-by-side
duplicates are estimated typically in the range 0.7–0.9, sug-
gesting that side-by-side duplicates share about half of their
variability as measured by squared correlation. Correlations
between replicates in top and bottom halves of array are
typically estimated in the range 0.5–0.6, suggesting that du-
plicates at the maximum distance apart still share about a
quarter of their variability. These observations are consistent
with the idea that spots which are further apart should be
less highly correlated.

In most experiments the genewise correlation estimates ρ̂g
are found to be too variable across genes to be compatible
with a common true correlation and the theoretical scaled
Fn−k,n sampling variability for (1 + ρ̂g)/(1 − ρ̂g) (data not
shown). In other words the assumption of constant correla-
tion across genes does not appear to be strictly tenable. On
the other hand, the between and within sample variances sBg
and sWg have been found to be positively associated, meaning
that the correlation estimates ρ̂g are less variable, relative to
the theoretical F -distribution, than are the sample variances
s2g relative to their theoretical chisquare distribution. So the
assumption of constant correlation appears to be valid in
practice in the relative sense that the correlations are more
nearly constant than are the variances themselves.

The effectiveness of the common correlation model seems
to be due to three main characteristics. Firstly, the esti-
mated common correlation is very stable being a consensus
estimator derived from a large number of genes. This sta-
bility results in a favorable variance-bias trade-off, especially
for small data sets. Secondly, the correlation is a nuisance
parameter rather than a quantity of primary interest. It has
been noted that the genewise t-statistics are not sensitive to
small changes in the correlation estimate, so it is not nec-
essary to track small differences in the genewise correlations
provided that the common correlation estimate is broadly
correct. Thirdly, the common correlation model causes genes
with poor quality data to be down-weighted. Good quality
data seems to give rise to consistently high correlations be-
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tween replicate spots. Even for arrays with a lot of poor
quality spots, the common correlation is generally large and
positive. Those genes which do give rise to low or even neg-
ative correlations seem to do so most often because of poor
quality data, for example artifacts on the surface of the ar-
rays which affect only one of a set of replicate spots. Holding
the correlation fixed forces the estimated residual variance
for these genes to be relatively large to reflect the disagree-
ment between the replicate spots. This means that statistical
significance for these genes is downweighted, a phenomenon
which seems conservative and desirable. Allowing each gene
to estimate its own correlation would cause disagreements
between replicate spots to be disregarded.

The formal calculations in this paper have assumed nor-
mality of the expression log-ratios as well as independence
and constant variances across arrays for each gene. There are
several reasons to expect the methodology to remain useful
even for data which deviates from normality. Firstly, apart
from the bias correction b(f1, f2) which is relatively small
in magnitude, the estimators derived here remain consistent
given only the first and second moments of the response
distribution. Secondly, the estimation procedures can be
modified to make them more resistant to outliers. A simple
method which has proved effective is to estimate θ not from
θ̄ in Section 5 but from a robust mean of the θ̂g− b(dBg , dWg ).
This has the effect of ignoring a small proportion of aber-
rant correlation estimates. The default estimator used in
the limma software package is the trimmed mean removing
15% of the values from each tail.

Thirdly, and perhaps most importantly, the most basic
purpose of differential expression analyses for microarray
data is to rank the genes in terms of evidence for differ-
ential expression (Smyth et al., 2003). An effective ranking,
which reliably ranks the truly differentially expressed genes
near the top, is even more important than the ability to de-
cide which genes are significantly differentially expressed. It
is more important then that the p-values for different genes
are correctly ordered than that the p-values have the correct
uniform null distribution. On this measure, the common cor-
relation method has clear advantages over alternatives even
when the underlying model is not exactly correct. It is more
effective than averaging the replicate spots because it takes
into account deviations between replicates when estimating
the precision of the data for each gene. Compared with rank-
based or permutation tests, the parametric method described
here has the advantage of greater resolution, i.e., lack of gran-
ularity in the estimators and p-values, allowing genes to be
more finely graduated for small or moderate sized data sets.

For the reasons explained above, the application of the
methods described here is not limited to high quality data
sets for which normality might be reasonable nor to very
large data sets for which rigorous checking of the distribu-
tional assumptions might be feasible. In fact the benefits,

relative to alternative methods such as averaging the repli-
cate spots or simply ranking genes on fold change, may be
most pronounced in experiments with very few arrays or with
poor quality data. This expectation is born out by the spike-
in experimental data with n = 2.

As with any statistical modelling technique, it is assumed
that appropriate quality assessment has been done of the
data before application of the method proposed here. It has
been described in Section 5 how the method is capable of
incorporating spot and array quality weights which might
arise from such quality assessment.

The method used in this paper differs from previous work
on empirical Bayes or shrinkage estimators in that a suitably
chosen parameter is simply set equal across genes. The idea
works here because the correlation parameter is of secondary
interest from an inferential point of view and because it is
relatively stable across genes. The technique is applicable to
other situations involving mixed model analyses of microar-
ray data such as those with technical as well as biological
replication or the separate channel analyses described by Jin
et al. (2001) and Wolfinger et al. (2001). These situations
have within-block or within-spot correlations for which con-
sensus estimators might be used across genes.

The methods described in this paper, are implemented in
the software package limma for the R computing environ-
ment (Smyth et al., 2004). Limma is part of the Biocon-
ductor project at http://www.bioconductor.org (Gentleman
et al., 2004).
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Figure 1: Boxplots of Z-score equivalents of ordinary t-statistics (on the left) and of moderated t-statistics (on the right) for different

types of spike-in spot-pairs. The grey filled boxes are for statistics based on estimated between-replicate correlations while the

unfilled (white) boxes are for statistics based on averaging the replicate observations. Statistics are calculated from the whole series

of 26 arrays. Control spots labeled Calib1–10 are non-differentially expressed calibration spots at increasing dilutions and therefore

decreasing intensities. Control spots labeled 3DL and 3UL are ratio controls designed to be 3-fold down-regulated and 3-fold up-

regulated respectively. Control spots labeled 3DH and 3UH are similar but at high rather than low intensity. Control spots labeled

10DL, 10UL, 10DH and 10UH are similar but are 10-fold up or down-regulated.
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Figure 2: Boxplots of Z-score equivalents of ordinary t-statistics (on the left) and of moderated t-statistics (on the right) for different

types of spike-in spot-pairs. The grey filled boxes are for statistics based on estimated between-replicate correlations while the unfilled

(white) boxes are for statistics based on averaging the replicate observations. Statistics are calculated from two arrays. The boxes

include statistics from 13 such sets of two arrays.
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