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Abstract

It is well known that the Fisher scoring iteration for generalized linear models
has the same form as the Gauss-Newton algorithm for normal regression. This note
shows that exponential dispersion models are the most general families to preserve
this form for the scoring iteration. Therefore exponential dispersion models are
the most general extension of generalized linear models for which the analogy
with normal regression is maintained. The multinomial distribution is used as an
example.
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1 Introduction

Recently, Jørgensen (1987) has shown how to construct a class of multivariate linear
exponential families, called exponential dispersion models, which include as a special
case the generalized linear model families of Nelder and Wedderburn (1972). These
models were also discussed by McCullagh (1983) and others, including this author in
an unpublished ANU PhD Thesis. Nelder and Wedderburn (1972) and Wedderburn
(1974) showed that the Fisher scoring iteration for generalized linear models is a simple
generalization of the Gauss-Newton algorithm for normal models, and much use is made
of the analogy with normal regression in generalized linear model practice. The purpose
of this note is to point out that exponential dispersion models are the most general
families for which the Gauss-Newton structure of the scoring iteration is preserved. This
result is implicit in the work of McCullagh and Jørgensen, but is worth emphasizing
because it means that exponential dispersion models are the most general extension of
generalized linear models for which the analogy with normal regression is maintained.

Exponential dispersion models increase the range of univariate variance functions
for which generalized linear type models exits. For example, the variance may be
proportional to any power of the mean µp with p ≥ 1 or p ≤ 0. However, finding a
multivariate exponential dispersion model for a given mean and covariance function
is more difficult. Each exponential dispersion family is generated from a cumulant
function, from which the mean vector and covariance matrix are obtained as first and
second derivative respectively. This imposes considerable structure on the mean and
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covariance, so that multivariate exponential dispersion models exist only for special
mean-covariance relationships.

Even if the data is not from an exponential dispersion model, use of the Gauss-
Newton iteration can be justified by quasi-likelihood theory. Wedderburn (1974) and
McCullagh (1983) show that the Gauss-Newton iteration produces consistent estimates
provided only that the mean and covariance of the observations, rather their full dis-
tributional form, are correctly specified. Because of the relative paucity of multivariate
dispersion models, this approach is likely to be even more important in the multivariate
case than it has been in the univariate.

2 Exponential Dispersion Models
and The Scoring Iteration

Much of the attractive unity of ordinary generalized linear models arises from the
common form of the scoring iteration for the parameters in the linear model. The
iteration can be expressed as a linear regression, with the current residuals as dependent
variable and the current variance estimates as inverse weights. This largely explains
the tendency for normal regression methods to carry over approximately to the more
general class of models. The generalized linear model inherits local properties, such as
standard errors, score tests and measures of influence, from the linear regression in the
iteration. See for example Pregibon (1981), Cook and Weisberg (1982) and McCullagh
and Nelder (1983). It is therefore natural to try to preserve the form of the scoring
iteration in any extension of generalized linear models. We show below that exponential
dispersion models are the most general families to do so.

Consider a normal observation y with mean vector µ(β) and covariance matrix
V σ2, with β and σ2 unknown and V known. The scoring iteration consists of separate
iterations for β and σ2 since the two are orthogonal. Letting ` be the log-likelihood
function, the score vector for β is

∂`

∂β
=

1

σ2
dµ

dβ

T

V −1(y − µ),

where dµ/dβ = (∂µi/∂βj) is the matrix of partial derivatives, and the component of
the Fisher information matrix corresponding to β is

Iβ =
1

σ2
dµ

dβ

T

V −1 dµ

dβ
.

The scoring iteration for β is

βk+1 = βk + I−1
β

∂`

∂β
= βk + (

dµ

dβ

T

V −1 dµ

dβ
)−1 dµ

dβ

T

V −1(y − µ)
β=βk

which does not depend on σ2. This is the Gauss-Newton algorithm for least squares
estimation of β.
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Note that it would not greatly complicate matters if V were to depend on β, pro-
vided the above formulae were preserved. Let ` now be an unknown log-likelihood
function with scoring iteration

βk+1 = βk + F (βk) (1)

where

F (β) = (
dµ

dβ

T

V −1 dµ

dβ
)−1 dµ

dβ

T

V −1(y − µ) (2)

for given functions µ(β) and V (β). Let I be the corresponding information matrix.
Assume that dµ/dβ and V are of full rank, and that the support of the distribution
does not depend on β. Now F (β) = I−1∂`/∂β, so E(F ) = 0 and var(F ) = I−1. The
first identity shows that E(y) = µ, and the second that

I−1 = (
dµ

dβ

T

V −1 dµ

dβ
)−1 dµ

dβ

T

V −1var(y)V −1 dµ

dβ
(
dµT

dβ
V −1 dµ

dβ
)−1,

from which it is apparent that var(y) is proportion to V . Therefore we must have

∂`

∂β
=

1

φ

dµ

dβ

T

V −1(y − µ)

and

I =
1

φ

dµ

dβ

T

V −1 dµ

dβ
,

where φ is some proportionality constant. Now ∂`/∂β is linear in y, i.e.

φ
d`

dβ
=
dµ

dβ

T

V −1y − dµ

dβ

T

V −1µ,

so ` must have the form

` = {yT θ(β)− κ(β) + c(y, φ)}/φ (3)

where c is some function not depending on β, θ is such that

dθT

dβ
=
dµ

dβ

T

V −1 (4)

and κ is such that
dκ

dβ
=
dµ

dβ

T

V −1µ. (5)

Now (4) shows that
dθ

dµ
= V −1

which, when substituted into (5), implies that

dκ

dθ
= µ,
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and hence that
d2κ

dθTdθ
= V.

The likelihood (3) represents the family of exponential dispersion distributions derived
by Jørgensen (1987) starting with κ(θ) as a cumulant generating function.

Generalized linear models assume that the relationship between µ and the unknown
parameter vector β takes the form

g(µ) = Xβ, (6)

where g is a known link function and X is a matrix of covariates, so that

dµ

dβ
=
dg

dµ

−1

X.

Also g acts component-wise on µ so that dg/dµ is diagonal. For ordinary generalized
linear models then, the scoring iteration can be expressed as iteratively reweighted least
squares,

βk+1 = βk + (XTWX)−1XTWz

with diagonal weight matrix W = (dg/dµ)−2V and working vector z = (dg/dµ)(y−µ),
or even more compactly as

βk+1 = (XTWX)−1XTWz (7)

with z = (dg/dµ)(y − µ) + Xβ. The construction of the working vector z has no
computational advantage, but highlights the analogy with normal regression. On the
other hand the link linear model (6) seems to be important in limiting the amount
of nonlinearity in the model and increasing the stability of the scoring iteration. See
Smyth (1987) and Kass and Smyth (1990).

With a full covariance matrix V , the advantages of dg/dµ being diagonal are less
obvious. Indeed g usually is composite in multivariate applications. This does not
prevent the scoring iteration from being written in the weighted linear regression form
(7) with a non-diagonal weight matrix W .

Green (1984) casts the scoring iteration into a weighted least squares mould for
more general models than those considered here, in fact for any likelihood which is a
function of its expected values. However this involves replacing the residuals y − µ
with d`/dµ and so on, and the interpretation of the resulting iteration is much less
straightforward than that of (1) and (2).

3 Multinomial Data

The multinomial distribution is undoubtedly the most commonly used exponential
dispersion model with non-diagonal variance matrix. It is possible to fit the logistic
multinomial model in GLIM, by fitting a Poisson model with log-link to all the cell
counts and conditioning on a factor corresponding to the row totals (Aitkin et al, 1989).
This however involves a large number of redundant parameters, making it suitable
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only for small problems, and does not extend to other multinomial models such as the
ordinal models of McCullagh (1980). It is therefore highly desirable to be able to fit
the multinomial distribution directly.

Let y = (y1, . . . , yc)
T be an observation from a multinomial distribution satisfying∑c

i=1 yi = n. The log-likelihood function kernel is

`(y; p1, . . . , pc−1) =
c−1∑
i=1

yi log pi +

(
n−

c−1∑
i=1

yi

)
log(pc)

=
c−1∑
i=1

yi log (pi/pc) + n log(pc)

where the pi are the cell probabilities. This is an exponential dispersion model with

θi = log (pi/pc)

for i = 1, . . . , c− 1 and

κ(θ) = −n log(pc) = n log(1 +
c−1∑
i=1

eθi).

This confirms that

µi =
∂κ

∂θi
= npi

and

cov(yi, yj) =
∂2κ

∂θi∂θj
= npiδij − npipj

where δij is the kronecker delta function. In matrix terms

V = 〈µ〉 − µµT /n (8)

where 〈·〉 represents the diagonal matrix with the components of the vector down the
diagonal.

Now let y be a series of r independent multinomial observations in vector form,
y = (yij) with

∑c
j=1 yij = ni say. Let θ be the vector (θij) with θij = log(pij/pic).

Then the exponential dispersion model for y has cumulant generator

κ(θ) =
r∑
i=1

ni log(1 +
c−1∑
j=1

eθij ),

and var(y) = V is block diagonal with r blocks of the form (8). The multinomial
logistic model assumes that

θ = Xβ

where X is a matrix of covariates. Hence

dµ

dβ
=
dµ

dθ

dθ

dβ
= V X,
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so the scoring iteration for β is

βk+1 = βk + (XTV X)−1XT (y − µ). (9)

This can be evaluated efficiently using the fact that each block of V is a rank one
displacement of a diagonal matrix. Writing µi = (µij)

c−1
j=1 and Xi for the corresponding

c− 1 rows of X,

XTV X =
r∑
i=1

[XT
i 〈µi〉Xi − (XT

i µi)(X
T
i µi)

T /ni]

which can be calculated in O(rcdimβ) operations. See also Green (1984).
The ordinal models of McCullagh (1980) assume that

g(γ) = Xβ

where γ is the vector (γij) of cumulative expectations, and g is a link function acting

component-wise on γ. The cumulative expectations are defined by γij =
∑j
a=1 µia for

j = 1, . . . , c − 1 and i = 1, . . . , r. That is, γ = Hµ where H is block diagonal with
blocks that are lower triangles of ones. Then

dµ

dβ
=
dµ

dγ

dγ

dβ
= H−1 dg

dγ

−1

X,

and dg/dγ is diagonal. Again efficient programming uses the special structures of V
and H. The blocks of H−1 are the c− 1× c− 1 difference operators

1 0

−1
. . .
. . .

. . .

0 −1 1


so forming dµ/dβ is a very inexpensive calculation. The blocks of V −1 are the c−1×c−1
matrices

〈µi〉−1 + uuT /µic,

where u is a c− 1 vector of ones, and

xi =
dµi
dβ

T

u

is simply the last column of the ith block of XT (dg/dγ)−1 since H−T
i u has only one

nonzero component. So

dµT

dβ
V −1 dµ

dβ
=

r∑
i=1

[
dµTi
dβ
〈µi〉−1 dµi

dβ
+
xix

T
i

µic

]
and

dµT

dβ
V −1(y − µ) =

r∑
i=1

[
dµTi
dβ
〈µi〉−1 (yi − µi) + xi

µic − nic
µic

]
,

where yi and µi are the ith blocks of c − 1 components of y and µ respectively. See
also McCullagh (1980). The above formulae require O(rcdimβ) operations. Perhaps
the best known software to do this calculation is McCullagh’s (1979) program PLUM,
which is fairly widely available in the public domain.
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