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Abstract

The extraction of sinusoidal signals from time-series data is a classic problem of
ongoing interest in the statistics and signal processing literatures. Obtaining least
squares estimates is difficult because the sum of squares has local minima O(1/n)
apart in the frequencies. In practice the frequencies are often estimated using ad hoc
and inefficient methods. Problems of data quality have received little attention. An
elemental set is a subset of the data containing the minimum number of points such
that the unknown parameters in the model can be identified. This paper shows that,
using a variant of the classical method of Prony, parameter estimates for a sum of
sinusoids can be obtained algebraically from an elemental set. Elemental set methods
are used to construct finite algorithm estimators which approximately minimize the
least squares, least trimmed sum of squares or least median of squares criteria. The
elemental set estimators prove able in simulations to resolve the frequencies to the
correct local minima of the objective functions. When used as the first stage of an
MM estimator, the constructed estimators based on the trimmed sum of squares and
least median of squares criteria produce final estimators which have high breakdown
properties and which are simultaneously efficient when no outliers are present. The
approach can also be applied to sums of exponentials, and sums of damped sinusoids.
The paper includes simulations with one and two sinusoids and two data examples.

Keywords: frequency estimation, sums of exponential functions, elemental sets, least
trimmed sum of squares, least median of squares, MM estimators, high breakdown,
high efficiency.
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1 Introduction

1.1 A Special Nonlinear Regression Problem

The normal-error nonlinear regression model is

yt = µ(t) + εt, µ(t) = g(xt, β), εt ∼ N(0, σ2)

t = 1, . . . , n, where the mean function µ(t) depends nonlinearly on some unknown coefficient
vector β and some covariate vector xt, and we assume normal homoscedastic errors εt. One
special but important subclass of nonlinear regression models is that in which g(xt, β) is a
sum of sinusoids in t with the frequencies, phases and amplitudes constituting the β.

Fitting these sinusoidal models can involve daunting computational problems. The max-
imum likelihood estimators are ordinary least squares estimators, and the least squares
function has local minima spaced O(n−1) apart, making the gradient-based search methods
of general non-linear regression ineffective without excellent starting values.

This problem is further complicated by the possibility of outliers in the data. These can
be incorporated in the distributional model by assuming that the majority of the εt follow
the N(0, σ2) distribution but that a minority are “contaminated”. This possibility multiplies
the difficulties; not only do we have to find elusive estimators, but have to do so in the face
of data that disrupt the usual fitting criteria.

In this paper we develop methods which, with high probability, resolve the frequencies
to the correct local minima of the objective function, and which have high breakdown points
against outliers.

1.2 The Elemental Set Method

The method of elemental sets is widely used in linear regression as a way of getting reasonable
parameter estimates in data sets that may have substantial contamination, even by extreme
and badly-placed outliers (Marazzi, 1991). It involves performing many fits to a given data
set, each fit made to a subsample just large enough to identify the parameters. For example,
in a linear regression with p coefficients, the method involves sampling p of the cases and
performing an exact fit to get values for the p coefficients. Repeating this with different
subset of p cases leads to different coefficient vectors. A key characteristic of these coefficient
vectors is that, by definition, each has some support in the data. See Hawkins (1993) for
a discussion of the statistical properties of these coefficient vectors, and Rousseeuw (1984),
Hawkins, Bradu and Kass (1984), and Rousseeuw and Leroy (1986) for illustrations of the
approach for handling linear regression outliers.

The extension of elemental set methods to get high breakdown estimators in nonlinear
regression has been considered recently by Stromberg and Ruppert (1992) and by Stromberg
(1993, 1995). One difficulty is that the computation of exact fits to elemental sets is far from
trivial in general nonlinear regression. This paper shows that this difficulty does not apply
to sinusoidal regressions when the observations are at equi-spaced times as the elemental set
estimates can be computed algebraically. The approach actually applies to any function µ(t)
which solves a homogeneous differential equation with constant coefficients, notably sums
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of exponential functions and damped sinusoids as well as sums of sinusoids, although we
concentrate on the sinusoidal problem here. Even when the times are not equi-spaced, it is
sometimes possible to interpolate to equi-spaced times for the purposes of the elemental sets
as we show in Section 5.2.

The elemental set method is useful for optimizing criteria which are not smooth, have
many local minima or are otherwise not amenable to global optimization by refinement in
the parameter space. There are other classes of algorithms, notably simulated annealing and
genetic algorithms, which can also deal with multiple minima, but these have so far been
less used than elemental sets for detecting outliers in linear models. Atkinson and Weisberg
(1991) present some performance figures showing the simulated annealing is not competitive
with the other approaches. Genetic algorithms are more closely competitive on the linear
problem, and are therefore candidates for the nonlinear problem also. However they would
be more complex to program than the elemental set method and seem in general more suited
to problems where the objective function has more structure around the local minima.

1.3 Criterion Functions

The method of elemental sets involves many repeated fits using different elemental sets, each
fit providing an estimate of the parameters and a set of estimated residuals. We can use these
different fits in two ways. One is to “average” the parameter estimates from the different
fits in some sensible way. The other is to look across the different elemental sets for that
one yielding the minimum of some criterion function. This is logically related to the random
search for the least squares frequency estimate suggested by Rosenblatt and Rice (1988),
with the difference that each estimate considered has some support in the data so that the
candidates are relatively dense in the neighborhood of the true values. In either approach,
we can then use the estimate produced by the elemental sets as the starting point for some
further iterative refinement.

Write µ̂(t) for some estimate of the regression function of case t. This corresponds to the
estimate of the residual

et = yt − µ̂(t).

Conventional estimates are found by the LS criterion – minimizing the sum of squares of
all n of these residuals. This criterion is motivated by ideas of statistical efficiency but is
inappropriate if some of the residuals may be contaminated. The wish to protect the esti-
mate from such contamination leads to the minimization of outlier-insensitive criteria. Two
well-known examples are the “least trimmed squares” or LTS criterion and “least median
of squares” or LMS criterion. LTS aims to minimize the sum of squares of the h smallest
absolute residuals while LMS aims to minimize the hth smallest squared residual. The cov-
erage h is chosen to reflect the amount of protection against outliers that is felt appropriate,
with choices slightly above one-half the data set size reflecting the default of seeking the
maximum possible protection.

For any criterion, an estimator can be defined with which minimizes the criterion over
a large number of elemental sets. In this paper we report on simulations with the LS, LTS
and LMS criteria.
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1.4 Multistage Estimators

A feature of the elemental sets method is that it is finite. It can therefore be used to generate
preliminary estimators with which to initialize iterative estimation schemes such as maximum
likelihood or M estimation. In particular, an estimator which combines high breakdown with
high efficiency under normal errors can be achieved by using a high breakdown elemental
estimator to initialize the MM estimation scheme of Yohai (1987) and Stromberg (1993).
We use our elemental set estimators as part of a multistage estimator similar to that of
Stromberg (1993). We find that the elemental LTS and LMS estimators are successful in
resolving the frequencies to the correct local minima of the objective function even in the
presence of outliers. We find that both criterion are successful as stage one estimators for
an MM estimation scheme, and that in simulations the final estimators have both high
breakdown properties again outliers and high efficiency when there are no outliers.

2 Computation of Elemental Set Estimates

2.1 Constant Coefficient Differential Equations

The regression functions µ(t) we consider are those which solve constant coefficient differen-
tial equations of the form

p+1∑
k=1

ξkD
k−1µ = 0 (1)

where D is the differential operator. Solutions to (1) include complex exponentials, damped
and undamped sinusoids and real exponentials, depending on the roots of the polynomial
with the ξk as coefficients (Brockwell and Davis, 1991; Osborne and Smyth, 1995). Let the
roots be βj, j = 1, . . . , p. If the βj are distinct, then µ(t) is a sum of exponentials,

µ(t) =
p∑

j=1

αj exp(βjt) (2)

where in general the αj and βj may be complex. If the αj and βj are not all real, then they
must occur in complex conjugate pairs in order that µ(t) be a real signal. If the roots are
purely imaginary, then µ(t) is a sinusoidal signal

µ(t) =
p/2∑
j=1

αj sin(ωjt + φj) (3)

for real αj and φj and ωj ∈ [0, π).
The extraction of sinusoidal signals from time-series data and the least squares fitting of

exponential signals are highly nonlinear problems which have attracted enormous attention
in the statistics and engineering literatures. Algorithms which fit sums of real exponential
functions typically require excellent starting values and frequently have difficulty converg-
ing because of collinearity between the exponential decay functions. Sinusoidal signals on
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the other hand are asymptotically uncorrelated, but give rise to highly non-convex sums of
squares having local minima O(n−1) apart in the frequencies (Rosenblatt and Rice, 1988).
This has typically prevented the use of fully efficient global least squares estimators in prac-
tice. Even in the ‘clean-data’ case then, this class of problems presents substantial com-
putational difficulties. For neither type of problem have the even harder problems of data
quality have received much attention. Both however turn out to be amenable to elemental
set methods.

The basis of our method is that discrete values of µ(t) at equi-spaced times satisfy exactly
a difference equation, which is related in a known way to the differential equation (1). We
suppose that observations, yi = µ(ti) + εi, are made at equi-spaced times ti, i = 1, . . . , n,
where the εi are independent with mean zero and variance σ2. Write µi = µ(ti). The discrete
µi satisfy the difference equation

c1µi + . . . + cp+1µi+p = 0 (4)

i = 1, . . . , n−p, where the cj are the coefficients of the polynomial pc(z) = c1+c2z+· · ·+cp+1z
p

with roots eβjδt and δt is the spacing unit ti+1 − ti.

2.2 Elemental Set Estimators

An elemental set estimator consists of equating µi to yi for the sequence of observations com-
prising the elemental set and solving the resulting system of linear equations to identify the
cj. Doing so requires p equations, each involving p equi-spaced observations. The estimator
therefore gives closed-form estimates given a subsequence of 2p equi-spaced observations.
Having found the cj, the roots of the polynomial are found to identify the βj. Then another
p× p linear system is solved to find the αj.

The elemental set computation is in fact an application of the classical interpolation
method of Prony (1795). See Osborne and Smyth (1991, 1995), Kahn et al (1992), Mackisack
et al (1994) and Smyth (1999) for modern least squares modifications of Prony’s method.

Suppose that µ(t) is a general solution to the differential equation (1). Consider an
elemental set of 2p observations spaced s apart, ye = (yi, yi+s, . . . , yi+(2p−1)s)

T . The elemental
estimate of cs is the null vector of the (p + 1)× p matrix

Yi =


yi · · · yi+(p−1)s
...

...
yi+ps · · · yi+(2p−1)s


Without loss of generality we can put cp+1 = 1. Also let d = (c1, . . . , cp)

T . Writing BT
i for

the first p rows of Yi and bT
i for the last row, the elemental estimate is given by d̂i = −B−1

i bi.
Solving the polynomial with coefficients given by ĉ = (d̂T , 1)T gives estimates for the

roots esβ1 , . . . , esβp . After extracting estimates for the βj, the coefficients αj are found by
solving the linear system with the elemental set ye as the response and the matrix with
elements exp(ti+(j−1)sβk), j = 1, . . . , 2p, k = 1, . . . , p, as the design matrix.
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2.3 Frequency Estimation

We now specialize the discussion to that of a periodic signal. The derived signal µ(t) is a
sum of cosines if and only if the roots of the polynomial pc() lie on the unit circle. In this
case p is even and the number of frequencies is f = p/2. The roots of pc() occur in conjugate
pairs, exp(±

√
−1ωjs), j = 1, . . . , f , where the ωj are the frequencies.

The fact that the roots of pc() lie on the unit circle implies that c is symmetric, cj =
c2f+2−j for j = 1, . . . , f (Kay and Marple, 1981; Kundu and Kannan, 1997). If the signal is
known a priori to be sinusoidal then it is appropriate to constrain c to be symmetric. This
reduces the number of parameters which need to be estimated and reduces the size of an
elemental set to 3f data values.

Let Q be the (2f + 1)× (f + 1) matrix

Q =

 If 0
0 1
Jf 0


where If is the f × f identity matrix and Jf is the f × f anti-diagonal matrix

Jf =


0 1

.
.

.
1 0


The symmetry constraint can be represented as c = Qe where e is an unrestricted real vector
of dimension f + 1.

The elemental estimate of c is the symmetric null vector of the (2f + 1)× f matrix

Yi =


yi · · · yi+(f−1)s
...

...
yi+2fs · · · yi+(3f−1)s


The convention that cp+1 = 1 here implies that e1 = 1. Let d = (e2, . . . , ef+1)

T . If we write
bT

i for the first row of QT Yi and Bi for its remaining rows, then the elemental estimate of d
is d̂i = −B−1

i bi.
To obtain estimates for the frequencies we compute e = (1,d)T and c = Qe and solve

the polynomial with coefficients c as before to obtain roots on the unit circle. The roots
yield frequencies ω1, . . . , ωf and the elemental estimate for µ is obtained by solving

Xeα = ye

for α where Xe is the 3f × 2f matrix

Xe =
{
cos(ω1ti+(j−1)s), . . . , cos(ωf ti+(j−1)s), sin(ω1ti+(j−1)s), . . . , sin(ωf ti+(j−1)s)

}3f

j=1
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We can then obtain an elemental estimate for the entire mean vector from µ = Xα with

X = {cos(ω1ti), . . . , cos(ωf ti), sin(ω1ti), . . . , sin(ωf ti)}n
i=1

There are a couple of subtleties concerning sinusoid signals which affect the computational
burden of the elemental set method. The first is that not every sequence of 3f observations
can be interpolated by a signal with 3 sinusoids. This is dealt with easily. In that case
not all the roots of the polynomial pc() will lie on the unit circle, and the elemental set can
simply be discarded. The second subtlety is that sequences of observations which can be
interpolated by sums of sinusoids can be also interpolated by harmonics of the sinusoids.

If the elemental set ye is at unit-spacing, s = 1, then the returned roots (those lying
above the real line) are ρj = exp(

√
−1ωj), j = 1, . . . , f , with 0 ≤ ωj < π. The ωj are

obtained as the imaginary parts of the logarithms of the roots. If the elemental set ye is at
spacing s > 1, then the returned roots are ρj = exp(

√
−1ωjs), j = 1, . . . , f . For each root

we must consider the s possible complex values for ρ
1/s
j . Write ω0

j = = log(ρj)/s for the base
frequencies. The elemental set ye at spacing s can be interpolated by a signal using any of
the harmonics (ω0

j + 2πk/s) modulus π, k = 0, . . . , s − 1. In this way, any elemental set at
spacing s yields not one elemental set estimator, but sf , each of which exactly interpolates
the 3f observations.

Our approach has been to evaluate the criterion (LS, LTS or LMS) for a selection of
1 + f(s − 1) of the possible sf harmonics for each elemental set. This keeps to the com-
putations to lower order in s, allows many more elemental sets to be considered, and has
proved satisfactory in practice. The method consists of a one dimensional search over the
harmonics of each frequency in turn. This strategy often succeeds in minimizing the crite-
rion over the harmonics for a particular elemental set because of approximate orthogonality
between sinusoidal signals at different frequencies. The criterion is first evaluated at the
signal obtained from the base frequencies ω0

j . The criterion is then minimized by trying the
other s − 1 harmonics of the first frequency, holding all the other frequencies at their base
values. The criterion is then minimized by trying the other s − 1 harmonics of the second
frequency, holding the first frequency at its best value, and any remaining frequencies at
their base values. This process is continued until all of the frequencies have been considered.
The final set of harmonics is taken to be the elemental estimator of the frequencies.

It it worth mentioning that there is another way to compute nearly
(

n
f

)
algebraic estima-

tors which avoids the need for harmonics. Let yi = (yi, . . . , yi+2f )
T be a vector containing a

sequence of 2f + 1 consecutive observations starting at yi. A generalized elemental estimate
of the Prony vector c can be obtained as the symmetric null vector of the matrix

Yi1,...,if =
(
yi1 , . . . ,yif

)
where i1, . . . , if is any f -subset of 1, . . . , n − 2f . These estimates however are not true ele-
mental estimates, as they use more than the minimum number of observations, and therefore
this approach is not taken further in this paper.
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2.4 How Many Elemental Sets?

High breakdown estimators are found by evaluating the criterion over a large number of
elemental sets. The elemental estimate with the lowest value for the criterion is the working
estimate. Ideally the procedure would be repeated for all possible elemental sets, but this is
computationally expensive, and it is desirable to use a smaller number of elemental sets.

The PROGRESS algorithm used by Rousseeuw and Leroy (1987) to approximate the
LMS estimator in linear regression uses 1500 elemental sets when there are 3 unknown coef-
ficients and 3000 elemental sets when there are 6 or more unknown coefficients. Stromberg
(1993) showed that a smaller number of elemental sets is often sufficient when the elemental
sets are used as part of a multistage algorithm. Stromberg (1993) used log(0.001)/ log(1−εq)
elemental sets, where q is the number of unknown parameters and ε is the desired breakdown
point. This ensures that the probability is approximately 0.999 that at least one elemental set
will contain none of the outliers. With ε = 0.5 this suggests 52 elemental sets for estimating
one frequency, 439 for estimating two frequencies and 3534 for estimating three frequencies.
For the frequency estimation problem it is necessary to consider O(n) elemental sets so as
to resolve the frequencies to O(1/n). We use as default value Stromberg’s suggestion or n,
whichever is greater.

Preference is given to smaller values of the spacing s to minimize the number of harmonics
which need to be considered. However it is necessary to evaluate elemental sets which span
a reasonable range of the time points in order to ensure a high chance of detecting slow
frequencies. We require the maximum spacing considered to be at least s7% = n/14/(3f−1),
which ensures that the elemental sets at the larger spacings span at least 7% of the range of
the data. If the total number of elemental sets at spacings 1 to s7% is greater than the target
number of elemental set estimators, then only a proportion of the sets at each spacing are
used. If thinning is necessary, then the probability of choosing an elemental set at spacing
s used at each spacing is chosen inversely proportional to 1/(1 + f(s − 1)), i.e., to the
computation burden in evaluating an elemental set. To bound the computations for larger
data sets, software referred to at the end of this paper limits the total number of evaluations
of the criterion (including evaluations for harmonics) to 6000. This limit was not relevant
for the simulations reported in the next section.

Compared with the PROGRESS algorithm for linear regression, our algorithm performs
less computation for smaller data problems because of the economy on the number of elemen-
tal sets. This is despite the fact that a highly nonlinear regression function is being estimated.
For larger programs the computational complexity is about double that of PROGRESS be-
cause of the higher limit on the number of evaluations of the criterion.

3 A Multistage Estimator

Our algorithm is a multistage procedure which was inspired by that of Stromberg (1993).
First an estimator of the frequencies and coefficients is obtained using an eigenanalysis
method described by Smyth (1999). An initial frequency estimate is obtained using Pis-
arenko’s method adapted to make use of the symmetry constraint described above, and this
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estimate is refined using the ORA method from Kahn et al (1992), again adapted to make
use of the symmetry constraint. The ORA method is very insensitive to starting values,
and produces an estimator which is equivalent in efficiency to the least squares estimator,
although it is not robust against outliers. The eigenanalysis parameter estimate will be
denoted by θ̂ORA.

The criterion function (LTS or LMS) is also evaluated for each of the elemental set
estimates. Let θ̂ be the best elemental set estimate. The least squares fit is then found
to that half of the data with the smallest squared residuals, using θ̂ as starting value.
The least squares program is a Gauss-Newton algorithm with Levenberg damping to ensure
convergence. The resulting least squares estimator replaces θ̂.

Fitted values and hence residuals are obtained from θ̂ for the whole data set and these
are used to compute a scale M estimate. Using the same scale estimate, an M estimate of
the parameters is obtained using (i) θ̂ as starting value and (ii) θ̂ORA as starting value. The
M estimate with the lower value of the objective function is taken to be the final estimate.

The MM estimator is chosen as in Stromberg (1993). Hampel’s redescending psi func-
tion ρH is used (Hampel, Ronchetti, Rousseeuw and Stahel, 1986). The MM estimator was
constructed as recommended by of Yohai (1987) with ρ0(u) = ρH(u/0.212) for the scale and
ρ1(u) = ρH(u/0.9014) for estimation of the frequencies and coefficients. The M estimator
is implemented as suggested by Yohai (1987) but with Levenberg damping to ensure con-
vergence. Combined with a high breakdown starting estimator, the MM estimator produces
parameter estimates with a high breakdown point and with theoretical efficiency 95% under
normal errors and no outliers.

Stromberg (1993) used a Nelder-Mead minimization step after finding the least squares
fit to half the data and before computing the scale M estimator. The purpose this step was to
get closer to the global LMS estimator. We have not used a similar step as a default because
it is relatively slow compared with the rest of the computation. In the single sinusoid case it
can increase the number of criterion evaluations several-fold. In the simulations reported in
the next section we experiment with the use of the S-Plus functions ltsreg and lmsreg to get
closer to the LTS and LMS estimators respectively before computing the scale M estimate.
Our recommendation is that this step can be dispensed with if the LTS criterion is used.

Let e2
(i) be the ith ordered squared residual. Our algorithm defines the trimmed sum of

squares to be
∑r

i=1 e2
(i) where r = bn/2c+ b3f/2c, i.e., half the number of observations plus

half the number of parameters. Similarly the median squared residual is e2
(r), which agrees

with the PROGRESS algorithm of Rousseeuw and Leroy (1987). In the simulations reported
in the next section we have actually used r = bn/2c + bfc so that the criterion will agree
with the ltsreg and lmsreg functions when these are applied to the linear coefficients only.
The small difference in the criterion was not material in the simulations.
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Table 1: Simulation results for one cosine signal and no outliers. The true frequency is 0.5.

Method Mean StDev RMSE Efficiency
ORA 0.499956 0.001020 0.001021 0.982
ELS 0.500341 0.003598 0.003614 0.078
ELS-LS 0.499976 0.001011 0.001011 1.000
LTS 0.500431 0.004096 0.004119 0.060
LTS-LS 0.500247 0.002072 0.002086 0.235
LTS-MM 0.499943 0.001013 0.001015 0.993
LTS-LI1-MM 0.499945 0.001013 0.001014 0.994
LTS-LI-MM 0.499945 0.001013 0.001015 0.993
LMS 0.500377 0.004228 0.004245 0.057
LMS-LS 0.500137 0.001675 0.001680 0.362
LMS-MM 0.499966 0.001158 0.001159 0.762
LMS-LI1-MM 0.499946 0.001012 0.001014 0.995

4 The Performance Of The Estimator

4.1 One Sinusoid

We report here simulation results for estimators based on the LS, LTS and LMS criteria.
We have also experimented with an estimator based on the idea of “averaging” the different
elemental estimates. For this we took the principal axis of the Prony vectors arising from the
elemental fits, treating them as axial observations on the unit sphere. See Fisher et al (1987,
Section 3.2.4) for a discussion of principal axes. This principal axis estimator performed far
less well than the criterion-based estimators on the outlier free data and failed completely
when outliers were included. In the results reported here therefore we have ignored the
averaging based estimator in favor of the criterion minimization approach.

A simulation study was conducted with one frequency and n = 100. Independent
Gaussian observations were generated with means

µi = cos(0.5ti + 0.1)

ti = 1, . . . , n, and standard deviation σ = 0.2. The Cramer-Rao lower bound for the standard
deviation of an unbiased estimator of the frequency for these parameter values is 0.000975.

With n = 100 and f = 1 our algorithm uses 100 elemental sets. The requirement that
the elemental sets span 7% of the time range means that spacings up to s = 4 must be used.
A fraction of the available elemental sets are used at each spacing, these fractions being
0.33, 0.33, 0.22 and 0.165 respectively. This produces 100 elemental sets and a total of 219
evaluations of the criterion functions for the full data set.

Table 1 gives results for various estimators applied to 100 randomly generated data sets
with no outliers. For each of the other estimators the mean, standard deviation, root mean
square error (RMSE) and relative efficiency are given. The efficiency is computed relative to
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an idealized estimator, a least squares program (a Gauss-Newton algorithm with Levenberg
damping) which was started from the true value of ω = 0.5. The performance of this
estimator is therefore the best possible, and indeed its RMSE at 0.001012 was very close to
the Cramér-Rao Lower Bound.

The first row gives results for the ORA frequency estimator, which is nearly fully efficient.
The rows labelled ELS, LTS and LMS give results for the best elemental set estimator
using the sum of squares, LTS and LMS criteria respectively. The elemental least squares
estimator has efficiency 7.8% which increases to 100% when used as an starting value for a
least squares algorithm (ELS-LS). This shows that the elemental sets are able to resolve the
frequency to the correct local minima of the sum of squares. The elemental trimmed sum of
squares estimator has efficiency 6.0%. This rises to 23.5% when the least squares estimator
is found for the half of the data with smallest residuals (LTS-LS). This further rises to 99.3%
efficiency when used as the stage 1 estimator for MM estimation (LTS-MM). As described
in the previous section the scale M estimator was obtained using the LTS-LS estimate, and
the final M estimation algorithm for the frequency and coefficients was started from both
the LTS-LS and ORA estimates.

The LTS-LS estimator will not be the actual LTS estimator unless the correct subset
of observations has been chosen. Two attempts were made to further reduce the trimmed
sum of squares before computing the scale estimator. First the S-Plus function ltsreg (a
genetic algorithm) was used to minimize the trimmed sum of squares with respect to the
linear coefficients keeping the frequency fixed. This produces the LTS-LI1-MM estimator.
The use of ltsreg may change the subset of observations with smallest squared residuals,
so least squares on the half of the data with the smallest squared residuals and the ltsreg
function were iterated until the selected subset of observations did not change further. This
produces the LTS-LI-MM estimator. In Table 1 the LTS-MM estimator is already nearly
fully efficient, so that these further steps were not necessary.

The elemental LMS estimator has efficiency 5.7%, which increases to 36% when least
squares is used on the best half of the data, and further increases to 76% when used as the
first stage of the MM estimator. A further attempt was made to reduce the median squared
residual by using the S-Plus function lmsreg with the frequency fixed. This produced the
LMS-LI1-MM estimator, which is nearly fully efficient on this problem.

Table 2 gives the results of a similar simulation experiment with 30% outliers. Outliers
were generated to have standard deviations 100 times that of the good observations and were
associated with a random subset of the ti. Efficiencies were calculated relative to the least
squares algorithm applied to the good 70% of the data and started from the true frequency.
The performance of this estimator represents an ideal which is not necessarily achievable
in practice without knowledge of the generating process. The RMSE of this estimator at
0.001125 is actually slightly below the Cramér-Rao Lower Bound which is 0.00116 based on
the 70% of the observations without outliers.

The first three rows of the table give the results for the ORA estimator, for the ELS
estimator over the elemental sets, and for the least squares algorithm started from the
elemental estimator with lowest sum of squares. All of these methods fail completely because
of the presence of outliers.
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Table 2: Simulation results for one cosine signal and 30% outliers. The true frequency is 0.5.

Method Mean StDev RMSE Efficiency
ORA 1.593491 0.992601 1.476813 0.000
ELS 1.332609 0.854173 1.192832 0.000
ELS-LS 1.332352 0.853603 1.192245 0.000
LTS 0.499542 0.008610 0.008622 0.017
LTS-LS 0.499901 0.003418 0.003420 0.108
LTS-MM 0.499917 0.001251 0.001253 0.806
LTS-LI1-MM 0.499911 0.001247 0.001250 0.811
LTS-LI-MM 0.499911 0.001233 0.001236 0.828
LMS 0.498960 0.008063 0.008130 0.019
LMS-LS 0.499582 0.004589 0.004608 0.060
LMS-MM 0.499861 0.001306 0.001313 0.734
LMS-LI1-MM 0.499899 0.001272 0.001276 0.778

The LTS and LMS criteria are now markedly superior to least squares. The elemental
LTS estimator has efficiency 1.7% relative to least squares on the good data. This increases
to 10.8% when least squares is used to refine the estimator on the half of the data with
smallest squared residuals, and rises again to a very respectable 80.6% when used as the first
stage of the MM estimator. Small further rises in efficiency, up to 83%, were achieved by
using the ltsreg function to further decrease the trimmed sum of squares before computing
the scale M estimator.

The LMS criteria performs at least as well as LTS at the elemental set level, but does
not respond as well to the refinements. The elemental LTS estimator has efficiency 1.9%,
increasing to 6% when refined by least squares on the half of the data with smallest squared
residuals, and to 73% when used as the first stage of the MM estimator. A further increase in
efficiency to 78% was achieved by using the lmsreg function to decrease the median squared
residual with respective to the linear coefficients.

Of course even better results for the LTS and LMS estimators could be obtained if it were
known in advance that only 30% of the observations were contaminated (and not the 50%
allowed for by the level of trimming used). In that case further efficiency could be recovered
by trimming a smaller proportion of the data.

4.2 Two Sinusoids

Another simulation study was conducted with two frequency and n = 100. Independent
Gaussian observations were generated with means

µi = cos(0.3ti + 0.2) + cos(0.7ti + 0.1)

ti = 1, . . . , n, and standard deviation σ = 0.2. With n = 100 and f = 2 the algorithm uses
spacings up to s = 6, and uses 0.91 of the available elemental sets at spacings 1 to 5 and
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Table 3: Simulation results for the lower of two frequencies with no outliers. The true
frequency is 0.3.

Method Mean StDev RMSE Efficiency
ORA 0.299966 0.000965 0.000966 0.996
ELS 0.300387 0.004057 0.004076 0.056
ELS-LS 0.299979 0.000963 0.000963 1.000
LTS 0.299484 0.005076 0.005103 0.036
LTS-LS 0.299861 0.001754 0.001760 0.300
LTS-MM 0.299980 0.001009 0.001009 0.912
LTS-LI1-MM 0.299979 0.001009 0.001009 0.912
LTS-LI-MM 0.299980 0.001014 0.001014 0.903
LMS 0.300027 0.004901 0.004902 0.039
LMS-LS 0.299931 0.001292 0.001294 0.554
LMS-MM 0.299938 0.001071 0.001072 0.807
LMS-LI1-MM 0.299979 0.001005 0.001005 0.918

0.745 of the available elemental sets at spacing 6. This produces 439 elemental sets and a
total of 2417 evaluations of the criteria on the complete data.

The results for with two sinusoids are qualitatively the same as for one sinusoid. Table 3
gives results for the lower of the two sinusoids. In this case least squares started from the true
value has RMSE 0.000963 which is very close to the Cramér-Rao lower bound of 0.000975.
Table 4 gives the results for the higher of the sinusoids. In this case least squares started from
the true value with RMSE at 0.000938 outperforms the Cramér-Rao lower bound somewhat,
this being 0.001005. ORA is fully efficient for both frequencies. The elemental estimator
with minimum sum of squares has efficiency about 6%, but is fully efficient when used to
start the Gauss-Newton least squares algorithm. Again this shows that the elemental sets
are able to resolve the global minimum of the sum of squares. The elemental estimator with
minimum trimmed sum of squares has efficiency a little under 4%, but this rises to 30% or
60% when refined using least squares on the half of the data with smallest absolute residuals,
and to 91 or 92% when used as the first stage of a the MM estimator. Further attempts
to minimize the trimmed sum of squares before computing the scale M estimate did not
increase the efficiency of the final estimator. The LMS is slightly more efficient that the LTS
criteria at the elemental set level, but is slightly less efficient (81 to 85%) when used as the
first stage of the MM estimator. When the lmsreg function was used to further reduce the
median squared residual before computing the scale M estimator, the efficiency rose to 92
or 93%, similar to LTS.

Tables 5 and 6 give results for the two frequencies when 30% outliers were included
in the samples. The results are qualitatively the same as for one frequency. Efficiencies
are computed relative to least squares applied to the 70% of the data without outliers and
started from the true values. The performance of this estimator was similar to the Cramér-
Rao lower bounds based on the good data (RMSE of 0.001183 and 0.001338 versus bounds of

13



Table 4: Simulation results for the higher of two frequencies with no outliers. The true
frequency is 0.7.

Method Mean StDev RMSE Efficiency
ORA 0.699991 0.000931 0.000931 1.014
ELS 0.700287 0.003686 0.003697 0.064
ELS-LS 0.700016 0.000937 0.000938 1.000
LTS 0.700072 0.004809 0.004810 0.038
LTS-LS 0.700003 0.001215 0.001215 0.596
LTS-MM 0.699989 0.000978 0.000978 0.920
LTS-LI1-MM 0.699988 0.000980 0.000980 0.915
LTS-LI-MM 0.699985 0.000982 0.000982 0.911
LMS 0.700530 0.004375 0.004407 0.045
LMS-LS 0.700142 0.001233 0.001242 0.570
LMS-MM 0.700005 0.001019 0.001019 0.846
LMS-LI1-MM 0.699990 0.000973 0.000973 0.929

Table 5: Simulation results for the lower of two frequencies with 30% outliers. The true
frequency is 0.3.

Method Mean StDev RMSE Efficiency
ELS 0.848431 0.573100 0.793235 0.000
ELS-LS 0.850716 0.574819 0.796056 0.000
LTS 0.298395 0.009731 0.009862 0.014
LTS-LS 0.299615 0.003605 0.003626 0.107
LTS-MM 0.300046 0.001275 0.001275 0.863
LTS-LI1-MM 0.300048 0.001266 0.001267 0.874
LTS-LI-MM 0.300044 0.001236 0.001237 0.917
LMS 0.297937 0.009174 0.009403 0.016
LMS-LS 0.299075 0.005922 0.005994 0.039
LMS-MM 0.299989 0.001399 0.001399 0.717
LMS-LI1-MM 0.300019 0.001338 0.001338 0.784

14



Table 6: Simulation results for the higher of two frequencies with 30% outliers. The true
frequency is 0.7.

Method Mean StDev RMSE Efficiency
ELS 1.985364 0.674255 1.451475 0.000
ELS-LS 1.984822 0.680069 1.453706 0.000
LTS 0.701049 0.011471 0.011519 0.013
LTS-LS 0.700416 0.004177 0.004197 0.098
LTS-MM 0.699981 0.001435 0.001436 0.837
LTS-LI1-MM 0.699981 0.001427 0.001427 0.847
LTS-LI-MM 0.699967 0.001392 0.001392 0.890
LMS 0.700439 0.011533 0.011542 0.013
LMS-LS 0.700399 0.006650 0.006662 0.039
LMS-MM 0.700020 0.001582 0.001582 0.689
LMS-LI1-MM 0.699977 0.001515 0.001515 0.751

0.001165 and 0.001201 respectively for the two frequencies). As in the one sinusoid case, this
represents as ideal which is not necessarily achievable without knowledge of the generating
process.

Least squares on the complete data fails completely when the outliers are included. This
is true also for the ORA algorithm which is therefore not included in the tables. The
elemental estimator with lowest trimmed sum of squares has efficiency about 1.4%, which
rises to about 10% when refined by least squares on half of the data, and to 84 or 86% when
used at the first stage of the MM estimator. Further minimization of the trimmed sum of
squares before computing the scale M estimator increased the efficiency to about 90%.

The LMS criterion was at least as efficient as the LTS criterion at the elemental set level,
but did not respond quite as well to refinement by least squares on half of the data or to MM
estimation. Using the LMS criterion as the first stage for MM estimation produced about
70% efficiency, which was increased further to 75% or 78% using the lmsreg function before
computing the scale M estimator.

In summary we find here that the elemental set estimators which minimize the LTS or
LMS criteria can produce nearly fully efficient estimators when using as part of the multistage
algorithm, the LTS based estimator when first used with the MM estimator, and the LMS
estimator after further minimization with respect to the linear coefficients. The greater ease
with which the LTS criterion can be refined may be due to the closer relationship between
the criterion and the refinement methods. Least squares on half the data does in fact produce
LTS estimator if the correct half of the data is chosen.
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Figure 1: Circadian rhythms for the long-tail pocket mouse: 20-minute temperature averages.

5 Data Examples

5.1 Circadian Rhythms

The data are temperature recordings made at 2 minute intervals over 3 months on a nocturnal
mammal, Perognathus formosus (long-tail pocket mouse – common in the Nevada desert).
The animal was given 8 days of 12 hours light and 12 hours dark as an adjustment period,
followed by about 73 days of constant darkness (Andrews and Herzberg, 1985, Data Set 48.3).
The data was collected at Princeton University in the late 1960’s under the direction of Dr
C. S. Pittendrich. The interest of the researchers was to observe periodicities in the behavior
of the animals. Problems occurred during the experiment associated with transient failures
of the monitoring equipment and with imperfections in the data logging process, which was
based on a conversion to mechanical keypunch operation. Obvious errors, such as card punch
jams or misfeeds, were corrected during the experiment, but a proportion of outliers remain.
The data was obtained electronically from the Statlib database (lib.stat.cmu.edu). It has
been reformatted by one of the authors of this paper for easy input to statistical programs,
and is available from http://www.statsci.org/data/general/pformosu.html.

Here we analyze 20-minute averages of the temperatures. Figure 1 displays the temper-
atures for the first 8 days, together with the best fitting cosine curve. The frequency was
found by using the LTS elemental-set estimator as starting value for the MM estimator.
The constant term was initially set equal to the median of the data during the elemental-set
stage, and then included as an estimated coefficient during the MM estimation step. A large
number of outliers apparently due to equipment failures are obvious after about 5.5 days,

16



Day

P
er

io
d

20 40 60

23
.7

5
23

.8
5

23
.9

5

Figure 2: Circadian rythms for the long-tail pocket mouse: variation in the period of tem-
perature cycles over time. The dashed line corresponds to a 24 hour cycle.

but the fitted curve successfully ignores them and follows the daily periodic trend. There
are also a number of less obvious outliers closer to the fitted curve.

We use only one frequency is this example because we want to focus on the period of
the dominant cycle with and without the stimulus of external lighting. Adding two more
frequencies does not in any case dramatically improve the visual fit. The estimated frequency
for the first 8 days is 0.087273 corresponding to a period of 23.998 hours, almost precisely
equal to the known 24-hour period imposed by the lighting regime during the first 8 days.
Least squares based methods fail on this data. The ORA algorithms fails to converge and
terminates with a frequency of 0.164, a little less than twice as fast as the known daily
cycle. Similar cosine curves were fitted to successive series of 8 days of observations during
which the cage was in total darkness. Figure 2 plots the estimated periods for 10 successive
sequences of 8 days. It can be seen that the animal maintained, in the absence of external
stimuli, a period very close to but slightly shorter than its 24-hour period in the wild. During
the first few weeks the period fell from 24 hours to 23.75 hours, then recovered towards the
end of the experiment.

5.2 Variable Star

The determination of the periodicities of a variable star and the shape of its light curve
is important in studies of stellar structure and evolution. The relationship between period
and magnitude is used to determine distances on a cosmic scale, for example. The data in
this example gives observations on the magnitude of a variable star made from the Mount
Stromlo Observatory near Canberra in Australia over a period of about 250 days (Reimann,
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Figure 3: Blue band magnitudes of a variable star.

1994). The data was supplied by Professor John Rice of the University of California, Berkeley
(www.stat.berkeley.edu/users/rice/UBCWorkshop/). It has been reformatted for easy input
to statistical programs, and is available from http://www.statsci.org/data/oz/ceph2.

html. Magnitudes were recorded separately for the blue and red bands; the blue band
measurements are considered here. Some of the observations were considered to be unreliable
due to observation conditions.

Observation times were irregularly spaced depending on sky conditions and the observa-
tion schedule. For the purposes of using elemental sets, the data was interpolated linearly
onto an equally spaced grid of time points of the same length. The LTS elemental-set estima-
tor was used to obtain initial frequency estimates for the MM estimator. The MM estimator
used the exact time points and data rather than the interpolated data. Interpolation of the
data was used therefore only as a computational device to obtain starting values, and does
not directly affect the final estimates.

Figure 3 plots the data with the best fitting curve consisting of a constant plus two
sinusoids. The data includes one obvious outlier, and a number of other probable outliers
with smaller deviations from the curve. The estimated frequencies are 0.126 and 0.253,
corresponding to periods of 50.0 and 24.9 days. The star is therefore determined to be
periodic with period about 50 days. The light curve is well described by a cosine curve and
one harmonic. In this case, increasing the number of frequencies to four does not dramatically
improve the visual fit of the curve. The period and the relative brightness of this star help
to classify it as a star of the Cepheid class.
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6 Summary

This paper has considered a special but important class of nonlinear regression problems for
which elemental set estimators can be computed in closed form using Prony’s method. We
concentrated on estimating periodic signals, but the methods considered here can also be
applied to damped sinusoids and to transient exponential signals. We considered criterion-
based elemental estimators, which minimize a criterion over the elemental sets and also an
estimator which directly averages the elemental estimators by computing the principal axis
of the Prony coefficient vectors. The principal axis estimator requires less computation than
the criterion based estimators, but proves to be inefficient and to have poor breakdown
properties.

Our suggested algorithm uses an economical number of elemental sets as part of a mul-
tistage process. This produces an estimator with relatively small computational demands.
The LTS and LMS criterion based elemental estimators have high breakdown properties and
are able to resolve the frequencies to the correct local minima of the objective function.
The elemental based estimators can therefore be refined further using various local methods
including least squares for data points with small residuals and MM estimation. When used
as the first stage of MM estimation, and combined with a high efficiency least squares type
estimator which becomes relevant with good data, the elemental set based estimators pro-
duce an overall estimator which simultaneously has high breakdown and high efficiency in
the absence of outliers.

Using the LTS, LMS or LS criteria, elemental sets provide a solution to the problem of
obtaining fully efficient frequency estimators discussed by Rosenblatt and Rice (1988).

S-Plus functions for robust frequency estimation have been developed and are available
from the http://www.statsci.org/s/.
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