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Optimization

Optimization is the process by which one finds that
value of a vectorx, say, that maximizes or minimizes
a given function f�x�. The idea of optimization
goes to the heart of statistical methodology, as it is
involved in solving statistical problems based onleast
squares, maximum likelihood, posterior mode and
so on. A closely related problem is that of solving a
nonlinear equation,

g�x� D 0 �1�

for x where g is a possibly multivariate function.
Many algorithms for minimizingf�x� are in fact
derived from algorithms for solvingg D ∂f/∂x D 0,
where∂f/∂x is the vector of derivatives off with
respect to the components ofx.

Except in linear cases, optimization invariably
proceeds by iteration. Starting from an approximate
trial solution, a useful algorithm will gradually refine
the working estimate until a predetermined level of
precision has been reached. If the function is smooth,
a good algorithm can be expected to converge to a
maxima or minima when given a sufficiently good
starting value.

A good starting value is one of the keys to success.
In general, finding a starting value requires heuris-
tics and an analysis of the problem. One strategy
for fitting complex statistical models, by maximum
likelihood or otherwise, is to progress in stages from
the simple to the complex. Fit a series of models of
increasing complexity, using the simpler model as a
starting value for the more complicated model in each
case. Maximum likelihood iterations can often be ini-
tialized by using a less-efficient moment estimator. In
some special cases, such as generalized linear models
(GLMs), it is possible to use the datum point itself
as a starting value for the fitted values.

An extremum (maxima or minima) off can be
either global (truly the extreme value off over
its range) or local (the extreme value off in a
neighborhood containing the value) (see Figure 1).
Generally, it is the global extremum that we want.
(A maximum likelihood estimator, for example, is
by definition the global maximum of the likelihood.)
Unfortunately, distinguishing local extrema from the
global extremum is not an easy task. One heuristic
is to start the iteration from several widely varying

starting points and to take the most extreme (if they
are not equal). If necessary, a large number of starting
values can be randomly generated. Another heuristic
is to perturb a local extremum slightly to check
that the algorithm returns to it.Simulated annealing
and genetic algorithms are relatively recent types
of algorithms which are often used successfully on
problems where there are a large number of closely
competing local extrema.

This entry discussesunconstrained optimization.
Sometimes, however,x must satisfy one or more con-
straints. An example is some of the components ofx
being known a priori to be positive. In some cases the
constraints may be removed by a suitable transforma-
tion (xi D ezi for example), or by use of Lagrangian
multipliers (see Constrained optimization).

One must choose between algorithms that use
derivatives and those that do not. In general, methods
that use derivatives are the more powerful. However,
the increase in speed does not always outweigh the
extra overhead in computing the derivatives, and it
can be a great convenience for the user not to have
to program them. In some special cases it is pos-
sible to generate analytical derivatives directly from
the code defining the function by usingautomatic
differentiation .

Algorithms are also distinguished by the amount
of memory they consume. Storage requirements are
typically of orderN or N2, whereN is the dimension
of x. In many environmetric applications,N is not so
large that storage becomes an issue.

If one can calculate first and second derivatives of
f, then the well-known Newtonian method is simple
and works well. It is crucially important, though, to
check the function valuef�x� at each iteration and
to implement some sort of backtracking strategy to
prevent the Newton iteration from diverging to dis-
tant parts of the parameter space from a poor starting
value. If second derivatives are not available, then
quasi-Newtonian methods, of which Fisher’s method
of scoring is one, can be recommended. General
purpose quasi-Newtonian algorithms build up a work-
ing approximation to the second-derivative matrix
from successive values of the first derivative. If com-
puter memory is very critical, then conjugate gradi-
ent methods make the same assumptions as quasi-
Newtonian methods but require only storage of order
N [6, Section 10.6]. If even first derivatives are not
available, the Nelder–Mead downhill simplex algo-
rithm is compact and reasonably robust. However,
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the slightly more complex direction-set methods or
Newtonian methods with finite-difference approxi-
mations to the derivatives should minimize most
functions with fewer function evaluations. Although
all the above comments apply generally, the one-
dimensional problem is something of a special case.
In one dimension, once one can provide an inter-
val that contains the solution, there exist efficient
‘low-tech’ algorithms robust enough to take on all
problems.

A practical introduction to optimization is given in
Chapters 10 and 15 (Sections 15.5 and 15.7) of [6].
More specialist texts include [2]–[4]. A survey of
available software is given by [5].

One Dimension

The case wherex is one-dimensional is not just
a special case, it is qualitatively simpler than the
multidimensional case. This is because a solution
can be trapped between bracketing values, which are
gradually brought together. A minimum off�x� is
bracketed by a triplet of values,a < b < c, if f�b� is
less than bothf�a� andf�c� (see Figure 1).

The simplest and most robust method for function
minimization is the golden section search. Given a
bracketing triplet of points, the next point to be tried
is that which is a fraction 0.38197 of the way from
the midpoint of the triplet to the farther endpoint
(point D in Figure 1). One then drops whichever
of the endpoints is farthest from the new minimum.
The strange choice of step size ensures that at each
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Figure 1 The golden search method. The functionf�x�
has a local minimum atx2 and a global minimum atx1.
The points A, B, and C bracket the global minimum. The
next point tried by a golden section search would be D

iteration the midpoint is always the same fraction of
the way from one endpoint to the other (the so-called
golden ratio). After k iterations, the minimum is
bracketed in an interval of length�c � a� ð 0.61803k.

The golden section search is a linear method in
that the amount of work required increases linearly
with the number of significant figures required forx.
There are a number of other methods, such as the
secant method (see below), the method of false posi-
tion, Muller’s method, and Ridder’s method, which
are capable of superlinear convergence, wherein the
number of significant figures liberated by a given
amount of computation increases as the algorithm
converges. The basic idea is thatg should be roughly
linear in the vicinity of a root. These methods inter-
polate a line or a quadratic polynomial through two
or three previous points and use the root of the poly-
nomial as the next iterate. They therefore converge
more rapidly than golden search when the function
g is smooth, but they may converge slowly wheng
is not well approximated by a low-order polynomial.
They also require modification if they are not to risk
throwing the iteration outside the bracketing interval
known to contain the root.

It is an advantage to use one of the higher-order
interpolating methods when the functiong is nearly
linear but to fall back on the bisection or golden
search methods when necessary. In that way a rate
of convergence at least equal to that of the bisection
or golden search methods can be guaranteed, but
higher-order convergence can be enjoyed when it is
possible. Brent [1] has published methods that do
the necessary bookkeeping to achieve this and that
can be generally recommended for root finding or
minimizing in one dimension [6]. Brent’s algorithms
do not require the derivatives off or g to be supplied.
However, the method for minimizing a function can
be easily modified to make use of the derivative when
it is available [6].

Newton’s Method

The most celebrated of all methods for solving a
nonlinear equation is Newton’s method, also called
the Newton–Raphson method. Newton’s method is
based on the idea of approximatingg with its linear
Taylor series expansion about a working valuexk . Let
G�x� be the matrix of second derivatives off�x� with
respect tox. Using the root of the linear expansion
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as the new approximation gives

xkC1 D xk � G�xk��1g�xk� �2�

Newton’s method is illustrated in Figure 2(a). The
same algorithm arises by approximatingf with its
quadratic Taylor series expansion aboutxk and find-
ing the local extrema of the quadratic. Beware,
though, that Newton’s method as it stands will con-
verge to a maximum just as easily as to a minimum.
If f is a log-likelihood function, theng is the score
vector and�G is the observedinformation matrix .
Newton’s method for maximizing the likelihood is
based on the same quadratic expansion that underlies
asymptotic maximum likelihood theory.

Newton’s method is powerful and simple to imple-
ment. It will converge to a fixed point from any suf-
ficiently close starting value. Moreover, once it starts
to home in on a root, the convergence is quadratic.
This means that if the error isε, the error after one
more iteration is of orderε2. In other words, the
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Figure 2 Newton’s method: (a) quadratic convergence
from starting pointx0; (b) divergence from starting valuex0

number of significant places eventually doubles with
each iteration. However, its global convergence prop-
erties are poor. Ifxk is unlucky enough to occur near
a turning point ofg, the method can easily ‘explode’,
sending the next estimate far out into the parame-
ter space (Figure 2b). In fact, the set of values for
which Newton’s method does and does not converge
can produce a fractal pattern [6] (see Fractal dimen-
sions).

The problems with Newton’s method are (a) in-
ability to distinguish maxima from minima, and
(b) poor global convergence properties. Both prob-
lems can be solved effectively through a restricted-
step suboptimization [3]. A condition for a minimum
of f�x� is that G�x� be positive definite. We there-
fore add a diagonal matrix toG to ensure that it is
positive definite

xkC1 D xk � [G�xk� C �k I ]�1g�xk� �3�

It is always possible to choose�k sufficiently large
so thatf�xkC1� < f�xk�. A simple algorithm, then,
is to choose�k just large enough to ensure a descent
step. As the iteration converges to a minimum,�k
can be decreased towards zero so that the algorithm
enjoys superlinear convergence. This is the algorithm
of choice when derivatives off are available.

If G�xk� can be guaranteed to be positive definite
without the addition of a diagonal matrix, then an
alternative and popular strategy is to use a line search
suboptimization. In this case we can replace the
Newton step with

xkC1 D xk � ˛kG�xk��1g�xk� �4�

where 0< ˛k < 1. It is always possible to choose
˛k sufficiently small thatf�xkC1� < f�xk�. The line
search idea is to implement a one-dimensional subop-
timization at each step, minimizingf�xkC1� approx-
imately with respect tǫ k .

Both the restricted step and the line search algo-
rithms have global convergence properties. They can
be guaranteed to find a local minimum off and a
root of g if such exist.

Quasi-Newton Methods

One of the drawbacks of Newton’s method is that it
requires the analytical derivativeG at each iteration.
This is a problem if the derivative is very expensive
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or difficult to compute. In such cases it may be
convenient to iterate according to

xkC1 D xk � A�1
k g�xk� �5�

where Ak is an easily computed approximation to
G�xk�. For example, in one dimension, the secant
method approximates the derivative with the differ-
ence quotient

ak D g�xk� � g�xk�1�

xk � xk�1
�6�

Such an iteration is called a quasi-Newton method. If
Ak is positive definite, as it usually is, an alternative
name is variable metric method.

One positive advantage to using an approximation
in place ofG is thatAk can be chosen to be positive
definite, ensuring that the step will not be attracted
to a maximum off when one wants a minimum.
Another advantage is thatA�1

k g�xk� is a descent
direction fromxk , allowing the use of line searches.

The best known quasi-Newton method in statisti-
cal contexts is Fisher’s method of scoring, which is
treated in more detail below. Among general purpose
quasi-Newton algorithms, the best is probably the
Broydon–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm. The BFGS algorithm builds upon the earlier
and similar Davidon–Fletcher–Powell (DFP) algo-
rithm. The BFGS algorithm starts with a positive
definite matrix approximation toG�x0�, usually the
identity matrix. At each iteration it makes a min-
imalist (rank two) modification toA�1

k to gradu-
ally approximateG�xk��1. DFP and BFGS are both
robust algorithms showing superlinear convergence.

Statisticians might fall into the trap when using
algorithms such as BFGS or DFP of thinking that
the final approximationA�1

k is a good approximation
to G�1�xk� at the final estimate. SinceAk is chosen
to approximateG�xk� only in the directions needed
for the Newtonian step, however, it is useless for the
purpose of providingstandard errors for the final
estimates.

Fisher’s Method of Scoring

Of frequent interest to statisticians is the case where
f�x� is a log-likelihood function andx is the vector of
unknown parameters. Theng is the score vector and
�G is the observed information matrix. For many
models (curved exponential families are the major

class) the Fisher information,I �x� D E[�G�x�], is
much simpler in form than�G�x� itself. Furthermore,
sinceI �x� D var[g�x�], I �x� is positive definite for
any parameter valuex for which the statistical model
is not degenerate. The quasi-Newton method which
replaces�G�x� with I �x� is known as Fisher’s
method of scoring [7, Section 5g]. Fisher scoring is
linearly convergent, at a rate that depends on the
relative difference between observed and expected
information [9].

Consider the special case of nonlinear least
squares (see Least squares, general), in which
context Fisher scoring has a very long history and
is known as the Gauss–Newton algorithm. The
objective function is

f�b� D
n∑

iD1

[yi � ��ti, b�]2 �7�

where theyi are observations, and� is a general
function of covariate vectorsti and the vector of
unknown parametersb. Write y for the vector ofyi,
m for the vector of��ti, b�, andṁ for the derivative
matrix of m with respect tob. The Fisher scoring
iteration becomes

bkC1 D bk C �ṁTṁ��1ṁT�y � m� �8�

where all terms on the right-hand side are evaluated
at bk . The updated estimate is obtained by adding
to bk the coefficients from the multiple regression
of the residualsy � m on the derivative matrixṁ.
The Gauss–Newton algorithm therefore solves the
nonlinear least squares problem by way of a series of
linear regressions.

The Gauss–Newton algorithm can be speeded up
considerably in the special case that some of theb

appear linearly in�. For example, if

��ti, b� D ˇ1e�ˇ3ti C ˇ2e�ˇ4ti �9�

thenˇ1 andˇ2 are linear parameters. In such cases,
the Gauss–Newton iteration can be restricted to the
nonlinear parameters,̌3 andˇ4. This idea is known
as separable least squares [8, Section 14.7]. The same
principle is discussed in the context of maximum
likelihood estimation in [9].

Perhaps the most important application of Fisher
scoring is to generalized linear models(GLMs).
GLMs extend the idea of nonlinear regression to
models with non-normal error distributions, including
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logistic regressionand log-linear models (see Cate-
gorical data) as special cases. GLMs assume thatyi
is distributed according to a probability density or
mass function of the form

Pr�y; �i, �2� D a�y, �2� exp
{

1

�2 [y�i � b��i�]
}

�10�

for some functionsb and a (a curved exponen-
tial family). We find that E�yi� D �i D b0��i� and
var�yi� D �2v��i�, wherev��i� D b00��i�. If the mean
�i of yi is as given above for nonlinear least squares,
then the Fisher scoring iteration forb is a slight mod-
ification of the Gauss–Newton iteration

bkC1 D bk C �ṁTV�1ṁ��1ṁTV�1�y � m� �11�

where V is the diagonal matrix of thev��i�. The
update forb is still obtained from a linear regres-
sion of the residuals oṅm, but now the obser-
vations are weighted inversely according to their
variances.

Classical GLMs assume a link-linear model of
the form

h��i� D xT
i b �12�

for some link functionh. In that case the Fisher
scoring update can be reorganized as

bkC1 D �XTWX��1XTWz �13�

where z is a working vector with components
zi D h0��i��yi � �i� C h��i�, and W is the diag-
onal matrix of working weights 1/[h0��i�2v��i�].
The updatedb is obtained from weighted lin-
ear regression of the working vectorz on X.
Since X remains the same throughout the itera-
tion, but the working weights change, this iteration
is known asiteratively reweighted least squares
(IRLS).

When the observationsyi follow an exponential
family distribution, observed and expected informa-
tion coincide so that Fisher scoring is the same
as Newton’s method. For GLMs this is so ifh
is the canonical link that is defined byh��i� D �i.
We can conclude from this that IRLS is quadrat-
ically convergent for logistic regression and log-
linear models but is linearly convergent for bino-
mial regression with a probit link (see Probit
model), for example. In practice, rapid linear con-
vergence is difficult to distinguish from quadratic
convergence.

Nonderivative Methods

The Nelder–Mead downhill simplex algorithm is a
popular derivative-free optimization method. It is
based on the idea of function comparisons among a
simplex ofN C 1 points. Depending on the function
values, the simplex is reflected or shrunk away from
the maximum point. Although there are no theoretical
results on the convergence of the algorithm, it works
very well on a range of practical problems. It is a
good choice when a one-off solution is wanted with
minimum programming effort. It can also be used to
minimize functions that are not differentiable.

If the user is prepared to use a more complex pro-
gram, the best-performing methods for optimization
without derivatives are quasi-Newton methods with
difference approximations for the gradient vector.
These programs require only the objective function as
input and compute difference approximations for the
derivatives internally. Note that this is different from
computing numerical derivatives and inputing them
as derivatives to a program designed to accept ana-
lytical derivatives. Such a strategy is unlikely to be
successful, as the numerical derivatives are unlikely
to show the assumed analytical behavior.

A close competitor to the finite-difference methods
are direction set methods. These methods perform
one-dimensional line searches in a series of directions
that are chosen to be approximately orthogonal with
respect to the second-derivative matrix. The best
current implementation is given by Brent [1].

Another optimization strategy that usually does
not require derivatives is the expectation–maximi-
zation (EM) algorithm . Properly speaking, this is
not an optimization method in its own right but
rather is a statistical method of making optimiza-
tion easier. The idea is to view the dataset as an
incompletely observed version of a larger dataset for
which the optimization would be very easy. One max-
imizes the expectation of the log-likelihood of the
larger data-set, given the observed data. Since the
expectation itself depends on the unknown parame-
ters, and these are updated by the maximization, it
is necessary to iterate between the maximization and
the expectation until convergence. The EM algorithm
converges linearly at a rate determined by the propor-
tion of the completed data that is actually observed.
Compared with derivative-based optimization meth-
ods, the EM algorithm tends to converge slowly but
surely.
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Simulated annealing and genetic algorithms are
designed to minimize functions that are not smooth
and that may have many local minima. Simulated
annealing algorithms introduce a random element into
the iteration process, giving the algorithm a chance
to escape from a local extremum. Genetic algorithms
carry information about multiple candidates for the
global extremum that are simultaneously refined as
the iteration proceeds.

Software

Optimization software is included in the commer-
cial subroutine libraries IMSL and NAG, and in
many statistical programs such asSAS, S-PLUS,
MATLAB and Gauss. Publicly available software
can be obtained by searching the NETLIB online
library at

http://www.netlib.org/

The guides and software provided by the Optimiza-
tion Technology Center at the Argonne National Lab-
oratory at

http://www-fp.mcs.anl.gov/otc/Guide/

are also worth considering. Less elaborate programs
suitable for user modification can be found in [6]; see

http://www.nr.com/

An alternative decision tree for choosing software,
with special attention to global optimization, is
given at

http://plato.la.asu.edu/guide.html/
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