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A general framework for the analysis of count data (with covariates) is proposed using formu-
lations for the transition rates of a state-dependent birth process. The form for the transition
rates incorporates covariates proportionally, with the residual distribution determined from a
smooth non-parametric state-dependent form. Computation of the resulting probabilities is dis-
cussed, leading to model estimation using a penalized likelihood function. Two data sets are
used as illustrative examples, one representing under-dispersed Poisson-like data and the other
over-dispersed binomial-like data.
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1 Introduction

This paper proposes a very flexible approach to the analysis of count data in which almost
no assumptions other than smoothness are made about the distribution of the data. Non-
parametric smoothing techniques are used to allow the fitted models to adapt to arbitrary
response distributions.

The most common models for count data are those based on the binomial and Poisson
distributions (McCullagh and Nelder, 1989). Data often exhibit departures from these
models and so various alternatives and generalizations have been proposed including quasi-
likelihood methods, random effect models and mixture models. See for example Dean
(1998), Lindsey (1999, Chapter 7), McCullagh and Nelder (1989, Sections 4.5, 5.5 and
6.2) and the references cited therein. The bibliography in Lindsey (1999) is particularly
extensive. In this paper we use extended Poisson process models (EPPMs), a new class

of models that enable a more general approach to the analysis of count data than any of

the existing methods (Faddy, 1997a, 1997b, 1998a, 1998b; Faddy and Bosch, 2001; Faddy



and Fenlon, 1999; Toscas and Faddy, 2003). EPPMs represent any discrete distribution
as the distribution of the number of events occurring in a finite time interval of a state-
dependent Markov birth process, also called a pure birth process. It is the nature of
the state-dependence of the transition rates of the Markov process which determines the
dispersion properties of the resulting distribution. Standard distributions correspond to
linearly increasing or decreasing transition rates while over or underdispersion relative to
these standard distributions in manifested as increasing or decreasing, convex or concave
transition rate curves. EPPMs can be usefully applied to almost any regression problem
with count responses but are especially appropriate when the counts can be thought of as
accumulating over time. In such cases the shape of the state-dependence of the transition
rates is often directly interpretable and may provide an intuitive explanation for why any
over- or under-dispersion has occurred.

Previous papers on EPPMs have used simple non-linear parametric functions for de-
scribing the transition rates as a function of the number of events. This has the effect
of describing a parameterized class of response distributions which includes the Poisson,
negative binomial and binomial distributions as special cases. Although this approach is
appealing, the choice of the specific parametric form for the transition rates is inevitably
somewhat ad hoc. This paper takes a more computational, data analytic approach. The
transition rate sequence is instead estimated non-parametrically, allowing the data to de-
termine the form of the transition rate sequence. The transition rates are unconstrained
and a penalty function approach is taken to impose smoothness on the sequence. In
this way the method is able to adapt, given adequate data, to quite arbitrary response
distributions.

Covariates are allowed to affect the response distribution through a proportional rate
model in which the transition rates depend parametrically on the covariates but non-
parametrically on the number of events. We call the resulting regression models semi-
parametric extended Poisson process models.

The penalty function approach taken in this paper to non-parametric smoothing is
analogous to penalty function methods used for smoothing probability densities (Tapia
and Thompson, 1978) or for scatterplot smoothing (Eubank, 1998; Green and Silverman,

1994). There are close links with spline theory here, especially with cubic smoothing



splines which arise from an integrated second derivative squared penalty function (Rein-
sch, 1967). We propose an adjusted version of this penalty function using both first
and second differences which allows for modelling departures from the Poisson, negative
binomial and binomial distributions within the one framework.

The most serious limitation of semi-parametric EPPMs is that they are computation-
ally intensive. The probabilities which define the response distribution are defined only
indirectly in terms of the parameters defining the transition rates. Except in special cases,
there are no closed form expressions even for the mean or variance of the response distribu-
tion. Although there exist numerical techniques for computing the probabilities based on
matrix exponentials (Sidje, 1998), these methods require O(yyax) Operations where ypax
is the largest response count and so are suitable only for small to moderate counts. For
large n, very good saddle point approximations are available for the probabilities (Daniels
1982; Smyth and Podlich, 2002). The use of saddlepoint approximations together with
exact calculations for the smallest n makes it possible to perform accurate calculations
while keeping the computational load manageable.

Section 2 of this paper reviews the basic concepts of EPPMs and surveys briefly
results which relate dispersion to the shape of the transition rate sequence. Section 3
introduces semi-parametric proportional rate models and Section 4 discusses numerical
strategies for computing probabilities and the likelihood function. Section 5 explains the
penalized likelihood approach to non-parametric smoothing. Sections 6 to 9 consider two
data examples in detail, one Poisson-like and one binomial-like. Section 7 considers how
to choose the degree of smoothing and Section 9 discusses tests for extra-dispersion and
for the covariates, in the context of the two data examples. The paper concludes with

discussion in Section 10.
2 Extended Poisson process models

2.1  Transition rate representations of count distributions

An extended Poisson (or pure birth) process is a continuous time process {X(¢);¢ > 0}

on the non-negative integers satisfying X (0) = 0 and
P{X(t+dt)=n+1|X(t) =n} = A\t + o(61) (1)
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Table 1: Numbers of surviving foetal implants

Number of implants | Frequency
1 10
2 4
3 4
4 3
5 8
6 12
7 16
8 31
9 66
10 184
11 363
12 458
13 444
14 296
15 157
16 47
17 16
18 10
19 1
20 0
21 1

for n > 0 where the A\, are non-negative transition rates. If the A\, = X for all n, then
this is an ordinary Poisson process and X (t) follows a Poisson distribution with mean
At. Consider the process at a given time, which we will take to be one without loss of
generality, and define m, = P{X (1) = n}. It is obvious that any sequence \, determines
a sequence of probabilities 7,. Faddy (1997a) has shown that the reverse is also true.
For any probability distribution 7, on the non-negative integers, there is a transition rate
sequence A, such that 7, = P{X (1) = n} for all n. For any n such that P{X (1) > n} > 0,
A is uniquely determined. We call the sequence ), the transition rate representation of
the count distribution defined by the 7.

To see how the ), sequence corresponds to a probability distribution consider the data
in Table 1. Each count gives the number of sites where fertilized eggs have implanted in
a mouse utero. McCaughran and Arnold (1976) found that none of the normal, Poisson,
binomial or negative binomial distributions provided an acceptable fit to these data. The
data are in fact considerably under-dispersed relative to the Poisson, with sample variance

4.77 much less sample mean 12.18. It is not clear what theoretical distribution could be
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Figure 1: Foetal implants empirical probability distribution (above) and empirical transition
rates (below). Symbols denote observed values and solid lines denote estimates from smoothing

used to model this data. The plot symbols in the upper plot in Figure 1 show the
empirical distribution of these data while those in the lower plot give the A-sequence
corresponding to this empirical distribution. (No symbol is shows for Ay in the lower
plot as it is infinite, corresponding to zero observed frequency.) The transition rates are
far from constant which would correspond to a Poisson distribution. The rise then fall in
the transition rates as n increases shows that the distribution is left skew relative to the
Poisson. The solid line on the lower plot gives the results of a smooth non-parametric
fit to the transition rates, explained in Section 6. The solid line on the upper plot gives
the probabilities arising from the smoothed transition rates. The smoothed probabilities
show close agreement with the observed frequencies. The transition rate representation

together with non-parametric smoothing provide an excellent fit the observed data.



2.2  Models for overdispersion and underdispersion

As already noted, a constant transition sequence A, = A for all n corresponds to the
Poisson distribution with mean A. Other linear transition rate sequences also result in
standard distributions. A linearly increasing sequence, A\(n) = a(N + n) with a > 0,
gives the negative binomial distribution with success probability p = exp(—a), mean
N(1 — p)/p and variance N(1 — p)/p®. A linearly decreasing sequence, A\(n) = a(N — n)
with a > 0, gives the binomial distribution with success probability p = 1 — exp(—a) and
size parameter V. It is well known that the negative binomial and binomial distributions
are overdispersed and underdispersed respectively relative to the Poisson. Ball (1995) has
shown that any increasing transition rate sequence leads to an overdispersed distribution
with var{ X (¢)} > E{X (t)} and any decreasing sequence to an underdispersed distribution
with var{X (¢)} < E{X(¢)}.

Further, the results of Ball and Donnelly (1987) and Brown and Donnelly (1993) show
that X (¢) can show overdispersion or underdispersion relative to the binomial distribution
depending on the convexity or concavity of the A, sequence. For increasing sequences
An, the work of Donnelly, Kurtz and Marjoram (1993) can be used to show that the
variance of X(¢) is as a function of the mean greater than predicted by the quadratic
function corresponding to a negative binomial distribution for convex A, sequences and
less for concave sequences. Further, numerically comparing distributions suggests that
convex increasing A, sequences result in distributions with greater skewness, and concave
increasing sequences result in distributions with less skewness, than negative binomial
distributions with the same mean and variance.

There is thus a wide range of possible probability distributions to be constructed from
monotone ), sequences and the dispersion properties of these distributions relative to the
standard Poisson, negative binomial and binomial distributions can be broadly interpreted
in terms of the rate of increase or decrease of the A, sequence. Non-monotone sequences
provide even more possibilities such as that arising from the data in Table 1. The complete
generality of the methodology allows any count distribution to be constructed from an

equivalent ), sequence.



3 Semi-parametric proportional models

Assume that independent responses y; are observed together with covariate vectors x;,
¢t =1,...,1. Each y,; takes values on the non-negative integers. Let \;,, n > 0, be the
transition rate sequence corresponding to the distribution of y; given x;.

In previous work on EPPMs, parametric models have been proposed for J; ,. In Faddy

(1997a) deviations from the Poisson distribution were allowed using the functional form,

/\in = az(b—i— n)c

’

with @; > 0, b > 0 and ¢ < 1. The special case ¢ = 0 corresponds to a constant
sequence and the Poisson distribution while ¢ = 1 results in a linear sequence and the
negative binomial distribution. In Faddy and Fenlon (1999) deviations from the binomial

distribution were allowed using
Ain = a;e"™(N —n), n=0,1,...,N

with a; > 0. The special case b = 0 gives the binomial distribution while b6 > 0 and b < 0
result in overdispersion and underdispersion relative to the binomial distribution respec-
tively. Covariate effects can be incorporated into these models by setting a; = exp(x 3),
where (3 is a vector of regression parameters. The arising models are proportional tran-
sition rate models in which the transition rates are a product of an n-dependent factor
and a covariate-dependent factor.

Parametric proportional rate models are a flexible and useful class of EPPMs. How-
ever, to allow the data to play a greater role in determining an appropriate distribution
and describe the residual variation more accurately, the n-dependence factor of the tran-
sition rates may be estimated non-parametrically. Suppose that the y; are unconstrained

counts. Let

Ain = a(x; B)h(n) (2)
where a() is a known link function taking positive values and the function A(), rather
than taking on a parametric functional form, is to be estimated non-parametrically. We

use the term ‘semi-parametric’ to describe the model (2) since the covariate or systematic

effects are incorporated parametrically while the n-dependence or distributional form is
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determined non-parametrically. Non-constancy of h(n) is associated with deviations from
Poisson variation while non-linearity in h(n) is associated with departures from negative
binomial variation. If h(n) is constant and a() is the exponential function then (2) is
equivalent to the well known log-linear model for Poisson counts (McCullagh and Nelder,
1989).

Suppose now that y; is the observed number of cases out of a maximum possible /V;,

0 < y; < N;. An adjusted form of (2) appropriate for modelling binomial-like data is
Ain = a(x!B)h(n)(N; —n), n=0,1,...N; (3)

Departures from binomial variation are characterized by non-constancy of h(n). If h(n)
is constant and a() is the exponential function then (3) is equivalent to the well known
complementary log-log model for binomial counts.

The function A() in (2) and (3) should take positive values. It is convenient to write
h(n) = exp{g(n)} so that the sequence g(n) is unconstrained. In many cases it will be
natural to assume a() to be exponential also. In that case the proportional rate model
becomes an additive model on the log-scale in terms of the linear predictors x] 3 and the
log-transition rates g(n).

Practical experience shows that the proportional transition rate model is a useful one
for a wide range of data sets. It is wise though to check whether the assumption of
proportionality is reasonable for any given data set. If a() is the exponential function
then a test can be developed analogous to Tukey’s (1949) one-degree-of-freedom test for

non-additivity. On the log-scale (2) becomes
log(Xin) = x; B+ g(n),

where g(n) = log{h(n)}. The Tukey one-degree-of-freedom idea is to add an extra term
which is multiplicative in the additive effects. A test for non-additivity can be made by

testing Hy: 0 = 0 in the model

log(Ain) = xiTﬁ +g(n) + (5xiT,B g(n)

In all of the examples considered in this paper, a likelihood ratio test of 6 = 0 has been

carried out to check the assumption of proportional transition rates. In all data sets



encountered by the authors so far the assumption of proportionality has been judged to

be satisfactory.

4 Computation of probabilities

The greatest practical obstacle to the use of EPPMs is the efficient and accurate com-
putation of the response distribution probabilities and related quantities. This section
discusses numerical strategies available for computation.

Write Y; for the theoretical random variable of which y; is a realization. The log-
likelihood of the observed data is Y-, log(p;) where p; = P(Y; = y; | B, h(n),n > 0).
Likelihood computations require that we compute the p; and perhaps also derivatives of
the p; with respect to any parameters. The recursive nature of (1) ensures that each p;
is a function of all the transition rates from n = 0 to n = y;, i.e., P(Y; = y; | B, h(n),n >
0)=PYi=yi| Nigs---) Nigs)-

For the remainder of this section we will drop the subscript ¢ from y; and A;, and
consider the problem of computing the probability that Y = y given a specified lambda
sequence Ao, ...,A\,. Write p,(t) = P{X(t) = n} for the probabilities defined by (1).
In this notation, the probability we seek to compute is p,(1). The classical approach to
computing the probabilities of pure birth processes is through the Chapman-Kolmogorov
differential equations (Cox and Miller, 1965, Chapter 4). The probabilities satisfy the

equations

po(t) = —Xopol(t)

p%(t) = _)‘npn(t) + )\n—lpn—l(t)a n 2 1

subject to the initial condition py(0) = 1. Although an analytic solution to these equations
can be written down (Bartlett, 1978, Chapter 3), this solution is extremely ill-conditioned
in finite precision arithmetic. The analytic solution is therefore not suitable for numerical
computation.

Given that we need consider only n = 0,...,y, the above system of differential equa-

tions may be written in matrix notation as

P _ qr() )



where p(t) is the vector of probabilities {py(?), ..., py(?) }T and Q is the transfer matrix

~X 0 0 0 0

Ao =M 0 0 0
Q- .

0 0 0 -+ =Xy O

0 0 0 - A1 =X

The value of p(t) which solves (4) at ¢ = 1 can be written

P =exp(Q)e

where exp(Q) is the matrix exponential of Q, defined to be the matrix resulting from
exponentiating the eigenvalues of Q, and e; is the unit vector (1,0,...,0)” (Stewart,

1994). The probability required to be computed is

py(1) = e; exp(Q) ey, (5)

i.e., the last element of the first column of exp(Q).

Although the Q is a sparse matrix, exp(Q) is a dense N x N matrix and computing
it is in general an O(N?) operation (Moler and van Loan, 1978). Computing (5) though
requires only the first column of exp(Q). Efficient algorithms for performing vector-matrix
exponential operations of this sort have been developed recently by Sidje (1998). Sidje’s
algorithm uses Krylov space methods to compute exp(Q) e; without computing exp(Q)
itself and gives good results providing vy is relatively small. Although our need is in fact for
only one element of p, there are no existing computational methods that the authors are
aware of which make it possible to compute this element without computing the complete
vector p.

The vector-matrix exponential approach can be extended to compute derivatives of
the probabilities. Suppose that the A\, depend on a parameter a and suppose that the
derivative dp/0da is required. Differentiating both sides of (4) with respect to a and

reversing the order of differentiation yields

0 op\ op
E(P %>—Q2<P %>
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where N
0
@-(4 o)
This shows that both p and its derivative respect to a may be computed using a vector-
matrix exponential operation where the matrix Qs is of dimension 2N x 2N. Podlich et
al. (1999) show how this approach may be extended to compute second derivatives as well
using matrices of dimension 4N x 4N.

In practice the matrix exponential approach to computing the probabilities is limited
to small y for reasons of accuracy as well as computational efficiency. The efficiency
limitation arises from the fact that the complete vector p of length y needs to be computed
for every y even though only the last element is required. The accuracy limitation arises
from the fact that all elements of p are computed with the same additive precision. The
last element p will not be computed to full machine accuracy if it is smaller than other
elements of the vector. If the last element is very much smaller than other elements then
it will be computed with very poor relative precision and may even be negative.

Fortunately, there are saddlepoint approximations to the probabilities which are very

accurate when y is large. The saddlepoint approximation of Daniels (1982) gives

y—1 B
[Ie™
J=0 1 9 o
P(Y =y) ~ o {1+ 50— ook} (6)
y y 1 8 24
(A —8)e2my ——
jli[() ’ jz—%()‘j —3)?
with § satisfying
Y 1
1= -,
jg() Aj — S

and with

This approximation maintains a small relative error over the entire range of count values
which is important when the approximation to compute log-likelihood functions. An even
more accurate saddlepoint approximation is developed by Smyth and Podlich (2002). The
approximation of Smyth and Podlich (2002) has the added advantage of being exact for the

Poisson, binomial and negative binomial special cases. Even using these approximations,
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evaluation of P(Y = y) is still an O(y) operation so that computation becomes more

expensive when the observed counts are large.

5 Non-parametric model fitting

This section considers the problem of estimating non-parametrically the smooth function
h(n) which determines the shape of the fitted distribution for each y;. There are several
smoothing methods which could be applied. In this section we propose a roughness
penalty approach.

Suppose that a set of ¢ equally spaced knot points has been chosen between 0 and
Ymax = maxy; and let h = (hy, ..., hy)T be the vector of values taken by h() evaluated at
the knot points. If . is not very large then the knot points will be all the integers from
0 t0 Ymax inclusive. Otherwise ¢ will be chosen smaller than y,... The number of knot
points will not materially affect the smoothed curve provided that it is large compared
with the effective degrees of freedom associated with the fitted curve. It is assumed that
h(n) for any n between 0 and y,.x can be expressed as a function of h. Given values for
B and the h(n) it is possible to evaluate X;,, n =1,...,y;, and hence p; = P(Y; = y;) for
each 1.

Write £(8,h;y) = S1_, logp; for the log-likelihood function as a function of 8 and h.
The regression parameters and h-curve are estimated by maximizing with respect to 8

and h the penalized log-likelihood function

4, (B,h;y) = £(B,h;y) — aPenalty(h) (7)

where o > 0 and Penalty(h) is a non-negative roughness penalty function. The smooth-
ing parameter « controls the trade-off between goodness of fit as measured by the log-
likelihood and smoothness of the n-dependent form as measured by the roughness penalty.
Small values for o will result in irregular values for the h;. The limiting case o = 0 cor-
responds to maximizing the ordinary log-likelihood and therefore to a g-parameter model
for the n-dependence. Larger values of o will see the penalty term forced downwards and
hence result in a smoother form for h using fewer effective parameters. As o — oo, h

converges to the smoothest possible form for which the penalty term is zero.
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It is appropriate to choose the penalty function such that it is zero only if h is constant,
corresponding to the Poisson distribution in (2) or to the binomial distribution in (3). To

achieve this, consider penalty functions of the form,
Penalty(h) = h""Kh" + vh' K/, (8)

where h' is the vector first differences h; = hj1 —hy, 7 =1,...,¢ — 2, h" is the vector of
second differences hy = hj,; —hj j =1,...,9—2, and K is a suitable weight matrix. One
well known penalty function of this form is that leading to a natural cubic spline form
for h(). This would arise from v = 0 and K = R~ where R is the symmetric banded
matrix with 2/3 on the diagonal and 1/6 on the first off-diagonals (Reinsch, 1967). This
penalty function is equivalent to imposing an integrated squared second derivative penalty
on h() (Silverman, 1985; O’Sullivan et al., 1986; Hastie and Tibshirani, 1990; Green and
Silverman, 1994). The smoothing application considered here is essentially discrete, in
that values taken by A at non-integer arguments are immaterial, so integrated derivative
penalty functions seem less relevant. This suggests that we may as well choose K = 1
so that h"TKh” is simply the sum of squared second differences. In the limited practical
experience of the authors, the fitted curve for h is relatively insensitive to the particular
weight matrix used and K = I has proved satisfactory.

The use of first differences as well as second differences in penalty functions has also
been suggested by Good and Gaskins (1971) in the context of non-parametric density
estimation. Good and Gaskins used 7 = 1. Here y needs to be much smaller, e.g., 10~*
or 1078, so that the second difference term in the penalty tends to impose linearity on A
for moderate o values while the first difference term comes into play to force constancy
for larger values of . An ideal for y will yield a full range of forms for h(n) as « increases
before h is forced to a constant value. In our experience, v = 10~* is satisfactory when
the counts are below around 20 while a smaller value, v = 10~% say, may be required
if larger counts are observed. For moderate values of « the first difference term in the

penalty function should have negligible effect.
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6 Example: Foetal implants re-visited

This section returns to the foetal implant count data introduced in Section 2. The counts
represent the number of sites where fertilized eggs have implanted in utero in control mice.
There are no zero counts since an animal has to have at least one site where a fertilized
egg has implanted in order to contribute. A fitted distribution to these control data is of
interest to provide a benchmark distribution for comparison with experimental data under
different environmental conditions. It is natural take a non-parametric approach to these
data because the empirical transition rate sequence shown in Figure 1 is non-monotonic
and does not follow any obvious parametric shape.

There no covariates for these data so A\;, = A, for all 7. Figure 2 shows the A,
sequences obtained using non-parametric estimation for various values of the smoothing
parameter, . Knots have been placed at each integer between n = 1 and n = 21 and
the multiplier of the penalty component involving the first differences was v = 10~%. The
maximum penalized log-likelihood, ¢,, and corresponding log-likelihood, ¢, are also shown
for each smoothing parameter value. Note that with a knot placed at every integer within
the range of the data, a = 0 yields fitted ), equal to the empirical sequence plotted in
Figure 1 corresponding to the observed frequency distribution of counts. Visual inspection
of the n-dependent fits and log-likelihoods in Figure 2 suggests that either the a = 0.5
or o = 1 fits are reasonable. The o = 0.1 fit is perhaps still a little rough for larger n
while the o = 2 fit has a large decrease in the log-likelihood relative to the increase in
smoothness. The smoothed sequence and probabilities shown in Figure 1 were those for
o = 0.5.

There are very few parametric distributions available to model under-dispersion rela-
tive to the Poisson distribution. Table 2 compares the fit of the non-parametric EPPM
with that of three such distributions and with the Poisson itself. The table gives log-
likelihoods and Pearson chi-squared goodness of fit statistics. When computing the Pear-
son statistics, the counts were grouped so that the expected count was at least five in each
bin. Consul’s generalized Poisson distribution (Consul, 1989) does sum to unity in this
case but does not in general and may require arbitrary truncation (Nelson, 1975). For

these data it fails to correctly model the left-tail and peak of the distribution. The multi-
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Figure 2: Non-parametric n-dependent fits for the foetal implants data.




Table 2: Comparison of model fits for the foetal implants data.

Model Log-likelihood | No. parameters er,of dfyor
Poisson -5053.2 1 889.6 | 17
Gamma count -4828.7 2 358.9 | 12
Consul -4718.0 2 2703 | 11
Multiplicative Poisson (6 = 3) -4704.1 2 248.7 | 11
Non-parametric EPPM -4493.0 6.2* 9.7 9.8

* See Section 9 for calculation of this value.

plicative Poisson (Lindsey, 1999, Section 7.2.3) and gamma count distributions (Winkel-
man, 1997) are less well known and also give unacceptable fits. The best performing
parametric model is a 4-parameter EPPM proposed in Faddy (1998a) which, using sad-
dlepoint probabilities, gives £ = —4493.96 and x? = 13.0 on 13 degrees of freedom. The
EPPMs are the only models to provide acceptable fits to these data.

It is tempting to interpret the increasing then decreasing fitted form of A(n) in terms
of biological feedback mechanisms. Successful implants in a host mouse indicate a healthy
environment so further implants become increasingly likely. Indefinitely large litter sizes
though are not biologically sustainable so, when an optimal litter size has been reached

in any mouse, further implants become increasingly discouraged.

7 Choice of smoothing parameter

The subjective, graphical approach taken in the previous section to choosing the smooth-
ing parameter is similar to the subjective methods often used to selection the degree of
non-parametric smoothing in regression settings (Green and Silverman, 1994, Chapter
3). Automatic selection of the smoothing parameter is desirable but is computationally
expensive, especially so in our setting since model fitting in itself is already intensive. In
this section some preliminary investigations are presented towards automatic selection of
the smoothing parameter.

The most common method used for automatic smoothing in non-parametric regression
is cross-validation. Green (1987) discusses a cross-validation score for general regression
problems derived from a ‘delete-one’ operation where each observation is deleted in turn

and then predicted from the resulting fit. A similar approach can be taken in our setting.
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Our cross-validation measure of predictive ability is based on twice the change in log-

likelihood on including the deleted observation,
~(=1) (4 i (=)
OV(e) =3 2{6(8 ", hCy"7) — (8" ", b Vly)}, 9)

where the (—¢) notation indicates that the ith observation has been removed. Here B(_i)
and h(-9 are the maximum penalized likelihood estimators of 8 and h based on y( 9.

The computational demands of the leave-one-out operation, requiring as many model
re-fits as there are observations, are extremely onerous for general use, even more so here
than in the regression setting. The computation can be reduced substantially by taking
a single Newton-Raphson step from the complete fit in the delete-one operation rather
than full likelihood maximization. Preliminary investigations using the data examples in
this paper and several others suggest that this ‘one-step’ method approximates the full
cross-validation well. For the foetal implants data, using a grid of « values at every tenth,
the full cross-validation and this one-step method both give o = 0.3 as the smoothing
parameter value giving the minimum value of the cross-validation function. Of the values
of a shown in Figure 2, a = 0.5 gave the smallest value for the score function (9), agreeing
with value chosen by visual inspection.

Another method of estimating the smoothing parameter which is sometimes used for
non-parametric regression with normal errors is REML, as in Wecker and Ansley (1983)
and Verbyla et al. (1999). It is possible to extend the idea of REML to this setting,
by treating 8 and h as nuisance parameters and computing an approximate conditional
penalized likelihood in a way analogous to Cox and Reid (1987). This is potentially less
computer intensive than the cross-validation approach but experience so far suggests that

it gives n-dependent forms that might be considered too rough on visual inspection.

8 Example: Toxoplasmosis data

Efron (1978) gave data on the proportion of subjects testing positive for toxoplasmosis
in 34 cities of El Salvador. Interest lies in using the annual rainfall of each city to
predict the proportion testing positive. Efron (1978) originally used a logistic regression

model for these data and found that a cubic polynomial function of rainfall was highly
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significant for predicting toxoplasmosis. However he noted the inadequacy of the model
fit, with the chi-squared goodness of fit statistic being suggestive of over-dispersion relative
to the binomial. He attributed this extra variation to imperfect random sampling and
consequently unrepresentative sample sizes. Efron (1986) subsequently proposed a double
logistic exponential family model in which the dispersion parameters were modelled as a
quadratic regression on sample size.

Consider a semi-parametric EPPM model for these data,
Ain = exp(bix; + box;® + byx;®)h(n)(N; — n),

where z;, 2;2, z;® are the values of linear, quadratic and cubic orthonormal polynomials of
rainfall and NV; is the number of patients tested in the relevant city. Owing to the presence
of over-dispersion, it is expected that A() will be an increasing function.

Figure 3 shows the fitted h(n) obtained for various values of the smoothing parameter
a with v = 1078 and with a knot placed at each integer between n = 0 and the maximum
observed count n = 53. The maximized penalized log-likelihoods and corresponding log-
likelihoods are also given on the plot. Visual inspection of the curves suggests that a
linear increasing form for h(n) with o &~ 10° is appropriate since the less smooth curves
with o < 10° do not represent significantly smaller log-likelihoods. The choice of o = 10°
is confirmed by the one-step cross-validation method.

The EPPM with o = 10° uses one fewer parameter than Efron’s (1986) double expo-
nential family model, however the fitted means compared in Figure 4 show that the EPPM
generally represents an improved fit. In particular the two cities with the largest counts
are much improved. The Pearson chi-squared goodness of fit statistic for the EPPM is
37.91 on 29 degrees of freedom indicating an acceptable fit.

The steadily increasing transition rates suggest an interpretation in terms of inter-
dependencies between the subjects during the testing process. As the number of subjects
testing positive increases in each city, symptoms of the disease may become more well-
known in the population and more positive subjects may as a result present themselves
for testing. This type of positive feedback results in data over-dispersed relative to the

binomial.
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Figure 3: Non-parametric n-dependent fits for the toxoplasmosis data.
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9 Inference in the semi-parametric framework

This section addresses the problems of assessing significance of h and 3 for non-parametric
EPPMs. The discussion is undertaken in the context of the two data examples.

Our approach to testing hypotheses abut h and B is to undertake likelihood ratio
tests with the smoothing parameter fixed at the selected value. If « is fixed at 10° then
testing for deviations from binomial variation for the toxoplasmosis data is equivalent to
testing for constant h(n) versus linear h(n). Twice the change in log-likelihood between
the binomial and the o = 106 EPPM model is 2 x Af = 14.59 on one degree of freedom.
The usual asymptotic chi-square approximation to log-likelihood changes gives a p-value
of 0.0001. To assess the significance of the polynomial rainfall covariates, twice the change
in log-likelihood is 6.57 on 3 degrees of freedom giving p = 0.087. It appears that, once
the over-dispersion in the data has been accommodated into the model, the significance
of rainfall for predicting toxoplasmosis is marginal at best.

Simulations verify the chi-squared approximations used in the two log-likelihood two
tests above. Both the binomial and linear h(n) models were fitted to 1000 simulated
binomial data sets. Figure 5 shows a quantile-quantile plot comparing twice the change
in log-likelihood between the two models with theoretical deviates from a chi-squared

distribution on one degree of freedom. The diagonal line is the line of equality and the
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Figure 5: Chi-square g-q plot of simulated values of the log-likelihood ratio for testing departures
from binomial variation for the toxoplasmosis data.

vertical line represents the 95% quantile of the chi-squared distribution. The plot shows
good agreement. This is further supported by the mean likelihood change which at 1.11
is close to the nominal value of one and the variance which at 2.15 is close to the nominal
value of two. Figure 6 shows a similar quantile-quantile plot from 1000 simulations of twice
the change in log-likelihood between the o = 10% model with and without the inclusion
of rainfall covariates, simulated under the null model. This indicates that the chi-squared
approximation used for assessing the significance of the rainfall effect is also in order, with
the mean of 3.10 close to the nominal 3 degrees of freedom and variance of 6.28 close to
twice this value. For these data the shape of the fitted h(n) sequence does not change
appreciably on removing the covariates since their effect is small. Treating the smoothing
parameter as fixed as we have done here may not be so appropriate for data where the
addition or removal of covariates dramatically changes the level of residual variation.
When a large number of degrees of freedom are involved, the chi-square approximation
to the likelihood ratio statistic cannot be expected to hold as well as above. Results
suggest that null distribution of the likelihood ratio statistic tends to have a larger mean
than the degrees of freedom would suggest. For example, if no smoothing is used then
the non-parametric EPPM model used for the foetal implants data is known to have 21

parameters, equal to the number of knots. Simulations comparing this model to a Poisson
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Figure 6: Chi-square g-q plot of simulated values of the log-likelihood ratio statistic for covariate
assessment for the toxoplasmosis data.

model with simulated Poisson data gives a mean likelihood ratio statistic of 27.5 whereas
the degrees of freedom are 20. The same simulation with o = 0.5 gave a mean likelihood
ratio statistic of 10.5, which also seems high. On the other hand, the Pearson goodness of
fit statistic should hold its nominal chi-squared distribution well provided that the data
are grouped appropriately to ensure that expected counts are never less than five say.

We have used Pearson goodness of fit statistics to give a rough estimates of equiva-
lent degrees of freedom associated with the semi-parametric fits. Consider for example
the semi-parametric EPPM fitted to the foetal implants data with a = 0.5. Data was
simulated from the fitted model, the EPPM refitted to each data set and the Pearson
goodness of fit statistic computed. To compute the Pearson statistics, the counts 2-3,
4-5 and 18 and over were grouped into single bins to give a total of 16 bins. The mean
Pearson statistic was 9.8 suggesting that equivalent degrees of freedom are 6.2 for the
non-parametric h(n) curve with o = 0.5. This value is a little higher than the four pa-
rameters used in Faddy’s (1998a) parametric model for the same data although the fitted
h(n) sequences are very similar. Nevertheless we give 6.2 as a conservative figure for the
equivalent number of parameters for this model in Table 2.

In scatterplot smoothing it is common to compute equivalent degrees of freedom for

non-parametric curves from the trace of the projection matrix (Hastie and Tibshirani,
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1990). That method is not available to us here because the non-parametric curve is fitted
to a latent rather than an observed sequence. A direct method for computing equivalent

degrees of freedom for semi-parametric EPPMS is clearly desirable but is not yet available.

10 Conclusion

EPPMs provide applied statisticians with a much wider class of count distributions than
earlier methods. Increasing birth rate sequences give rise to over-dispersed distributions
including but not limited to distributions arising from mixture models. Decreasing se-
quences give rise to under-dispersed distributions which are otherwise not straightforward
to construct. Non-monotonic sequences give rise to distributions which are distinctly
non-Poisson or non-binomial but which do not necessarily show marked over- or under-
dispersion. This paper has widened the class of EPPMs available by demonstrating how
an appropriate distributional shape can be determined non-parametrically from the data
using penalized likelihood. The model proposed incorporates covariate effects proportion-
ally into the transition rate model. The ability to accommodate non-standard variation
allows for more realistic assessment of the significance of covariate effects than otherwise
could be made.

The semi-parametric models provide a particularly promising framework within which
to approach data such as the foetal implants example, where data give rise to non-
monotonic birth rate patterns. Such a birth rate profile is interpretable in terms of
the process which produced the counts. In this example, it is natural to imagine that
for small n the birth rates would increase with n due to positively associated implan-
tation. However, the rate profile would eventually turn down for larger n because the
mouse is a finite biological system with a limited capacity to host implants. With this
interpretation, the non-monotonic rate sequence provides a graphical explanation for the
non-Poisson nature of the counts. Existing methods of regression analysis are not well
suited to this type of data because the non-Poisson nature of the counts is not necessarily
reflected in their mean-variance relationship, and because standard count distributions
will not correctly model the short right tail of the distribution. Even when the h(n)

sequence doesn’t admit a natural interpretation like this, non-parametric EPPMs remain
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useful for empirical modelling of count data. The h(n) sequence may be seen simply as
a convenient re-parameterization of the probability distribution representing the residual
variation.

Although the non-parametric methods considered in this paper can no doubt be refined
considerably, particularly from the point of view of computational efficiency, they provide
as they stand an practical methodology for allowing the data to determine the dispersion
properties of the response distribution. The methodology is also useful as an exploratory
tool for verifying or demonstrating the lack of fit of standard models such as the Poisson,
negative binomial and binomial models. In this exploratory role, semi-parametric EPPMs
may be used to suggest other suitable parametric functions for the n-dependent form of
the transition rates. In both these parametric and semi-parametric forms, EPPMs provide
a flexible, promising and distinctively different framework for the analysis of count data.

Software for fitting EPPMs has been developed for the popular statistical package

S-Plus and is available from http://www.maths.uq.edu.au/~hmp/.
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