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Abstract

For any generalized linear model, the Pearson goodness of fit statistic is the score
test statistic for testing the current model against the saturated model. The re-
lationship between the Pearson statistic and the residual deviance is therefore the
relationship between the score test and the likelihood ratio test statistics, and this
clarifies the role of the Pearson statistic in generalized linear models. The result
is extended to cases in which there are multiple reponse observations for the same
combination of explanatory variables.
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1 Introduction

Goodness of fit tests go back at least to Pearson’s (1900) article establishing the
asymptotic chisquare distribution for a goodness of fit statistic for the multinomial
distribution. Pearson’s chisquare statistic includes the test for independence in two-
way contingency tables. It has been extended in generalized linear model theory to
a test for the adequacy of the current fitted model. Given a generalized linear model
with responses yi, weights wi, fitted means µ̂i, variance function v(µ) and dispersion
φ = 1, the Pearson goodness of fit statistic is

X2 =
∑ wi(yi − µ̂i)2

v(µ̂i)

[14]. If the fitted model is correct and the observations yi are approximately normal,
then X2 is approximately distributed as χ2 on the residual degrees of freedom for the
model.
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The Pearson goodness of fit statistic X2 is one of two goodness of fit tests in
routine use in generalized linear models, the other being the residual deviance. The
residual deviance is the log-likelihood ratio statistic for testing the fitted model against
the saturated model in which there is a regression coefficient for every observation.
The Pearson statistic is a quadratic form alternative to the residual deviance, and is
often preferred over the residual deviance because of its moment estimator character.
The expected value of the Pearson statistic depends only on the first two moments
of the distribution of the yi and in this sense the Pearson statistic is robust against
mis-specification of the response distribution.

The score test, like the likelihood ratio test, is a general asymptotic parametric
test associated with the likelihood function [22]. Score tests are often simpler than
likelihood ratio tests because the statistic requires parameter estimators to be ob-
tained only under the null hypothesis. For this reason score tests have been proposed
frequently in generalized linear model contexts to test for various sorts of model com-
plications such as overdispersion [5] [3] [7] [24] [13] [19], zero inflation [8], adequacy
of the link function [20] [9], or extra terms in the fitted model [21] [4] [1] [2] [26] [19].

While the residual deviance arises from a general inferential principle, namely
the likelihood ratio test, the origin of the Pearson statistic has seemed more ad hoc.
Several authors have noted that score tests for extra terms in the linear predictor
give rise to chisquare statistics, but there has been no result for the residual Pear-
son statistic itself. Pregibon [21] shows, by using one-step estimators, that the score
statistic for extra terms in the linear predictor can be expressed as a difference be-
tween two chisquare statistics, just as the likelihood ratio test can be obtained as the
difference between two residual deviances. Cox and Hinkley [6, Examples 9.17 and
9.21] show that the simplest Pearson statistic, the goodness of fit statistic for the
multinomial distribution, can be derived as a score statistic. This article shows that
Cox and Hinkley’s result for the multinomial extends to all generalized linear models.
The Pearson goodness of fit statistic is itself a score test statistic, testing the current
model against the saturated model. The relationship between the Pearson statistic
and the residual deviance is therefore the relationship between the score test and the
likelihood ratio test statistics, and this clarifies the role of the Pearson statistic in
generalized linear models.

The result of this article extends to several more general situations. The result
extends to data sets with multiple counts in categories and to generalizations of
exponential families models, such as overdispersion models, for which there are extra
parameters in the variance function. It includes for example as special cases the results
on tests for independence in two-way contingency tables of Thall [26] and Paul and
Banerjee [19]. The general proofs given here are simpler and more transparent than
the special case proofs for contingency tables. Finally, the results given here do not
require link-linearity as in generalized linear models, but apply to any exponential
family non-linear regression model.

The theory of score tests is revised briefly in Section 2 and the background material
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required for generalized linear and non-linear models is stated briefly in Section 3. The
main results of the article are given in Section 4 showing the relationship between
score tests and goodness of fit. Section 5 goes on to consider models with extra-
dispersion and Section 6 considers estimation of the dispersion parameter.

2 Score tests

This section summarizes briefly the theory of likelihood score tests. Further back-
ground on score tests and likelihood ratio tests can be found in Rao [23, pages 417–418]
and Cox and Hinkley [6, Section 9.3]. Let `(y;θ1,θ2) be a log-likelihood function de-
pending on a response vector y and parameter vectors θ1 and θ2. We wish to test the
composite hypothesis H0 : θ2 = 0 against the alternative that θ2 is unrestricted. The
components of θ1 are so-called nuisance parameters because they are not of interest
in the test but values must be estimated for them for a test statistic to be computed.
The likelihood score vectors for θ1 and θ2 are the partial derivatives

˙̀
1 =

∂`

∂θ1

and
˙̀
2 =

∂`

∂θ2

respectively. The observed information matrix for the parameters is −῭ with

῭=
∂2`

∂θ1∂θT
2

=

(
῭
11

῭
12

῭
21

῭
22

)
.

The expected or Fisher information matrix is I = E(−῭), which is partitioned con-
formally with ῭ as

I =

(
I11 I12

I21 I22

)
.

The score test statistic is based on the fact that the score vector ˙̀ has mean zero
and covariance matrix I. If the nuisance vector θ1 is known, then the score test
statistic of H0 is

Z = I−1/2
22

˙̀
2,

where I1/2
22 stands for any factor such that I1/2

22 I
T/2
22 = I22, or equivalently

S = ZT Z = ˙̀T
2 I−1

22
˙̀
2

with `2 and I22 evaluated at θ2 = 0. The score vector ˙̀ is a sum of terms corre-
sponding to individual observations and so is asymptotically normal under standard
regularity conditions. It follows that Z is asymptotically a standard normal p2-vector
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under the null hypothesis H0 and that S is asymptotically chisquare distributed on
p2 degrees of freedom, where p2 is the dimension of θ2.

If the nuisance parameters are not known, then the score test substitutes for them
their maximum likelihood estimators θ̂1 under the null hypothesis. Setting θ1 = θ̂1 is
equivalent to setting ˙̀

1 = 0, so we need the asymptotic distribution of ˙̀
2 conditional

on ˙̀
1 = 0, which is normal with mean zero and covariance matrix

I2.1 = I22 − I21I−1
11 I12.

The score test statistic becomes

S = ˙̀T
2 I−1

2.1
˙̀
2

with ˙̀
2 and I2.1 evaluated at θ1 = θ̂1 and θ2 = 0. If I12 = 0 then θ1 and θ2 are said

to be orthogonal. In that case, ˙̀
1 and ˙̀

2 are independent and I2.1 = I22, meaning
that the information matrix I22 does not need to be adjusted for estimation of θ1,

Neyman [15] and Neyman and Scott [16] show that the asymptotic distribution
and efficiency of the score statistic S is unchanged if an estimator other than the
maximum likelihood estimator is used for the nuisance parameters, provided that
the estimator is consistent with convergence rate at least O(n−1/2), where n is the
number of observations. They show that we can substitute into S any estimator θ̃1

of θ1 for which
√

n|θ̃1 − θ1| is bounded in probability as n → ∞. In that case they
rename the score statistic the C(α) test statistic.

3 Generalized Linear Models

Generalized linear models assume that observations are distributed according to a
linear exponential family with an additional dispersion parameter. The density or
probability mass function for each response is assumed to be of the form

f(y;µ, φ) = a(y, φ) exp[{yθ − κ(θ)}/φ] (1)

where a and κ are suitable known functions. The mean is µ = κ̇(θ) and the variance
is φκ̈(θ). The mean µ and the canonical parameter θ are one-to-one functions of one
another. We call φ the dispersion parameter and v(µ) = κ̈(θ) the variance function.

Following Jørgensen [10, 12], we call the distribution described by (1) an expo-
nential dispersion model and denote it ED(µ, φ). If y1, . . . , yn are independently dis-
tributed as ED(µ, φ) then the sample mean ȳ is sufficient for µ and ȳ ∼ ED(µ, φ/n).
More generally, if yi ∼ ED(µ, φ/wi) where the wi are known weights, then the
weighted sum ȳw is sufficient for µ and

ȳw =
∑n

i=1 wiyi∑n
i=1 wi

∼ ED
(

µ,
φ∑n

i=1 wi

)
.
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A generalized linear model assumes independent observations y1, . . . , yn with yi ∼
ED(µi, φ/wi). The means µi are assumed to follow a link-linear model

g(µi) = xT
i β (2)

where g is a known monotonic link function, xi is a vector of covariates and β is an
unknown vector of regression coefficients. Without loss of generality we will assume
that the n× p matrix X with rows xi is of full column rank and that p < n, where p
is the dimension of β.

More generally we will consider generalized nonlinear models in which the mean
vector µ = (µ1, . . . , µn)T is a general n-dimensional function of the p-vector β. To
ensure that the parametrization is not degenerate, we will assume that the gradient
matrix ∂µ/∂β is of full column rank, at least in a neighborhood containing the true
value of β and the maximum likelihood estimate β̂.

In this article we mainly consider models in which the dispersion is known, φ = 1
say. Most models with discrete responses have known dispersion.

4 Goodness of Fit Tests

Let Ω be the locus of possible values for µ, Ω = {µ(β) : β ∈ IRp}. Let H0 be the
null hypothesis that µ belongs to Ω and let Ha be the alternative hypothesis that µ
is unrestricted. The goodness of fit test for the current model tests H0 against Ha.
For a generalized linear model, H0 is the hypothesis that the µi are described by the
link-linear model (2).

Theorem 1
The score statistic for the goodness of fit test of a generalized nonlinear model with
unit dispersion is the Pearson chisquare statistic

S =
n∑

i=1

wi(yi − µ̂i)2/v(µ̂i)

where µ̂i is the expected value µi evaluated at the maximum likelihood estimator β̂.

Proof. There exists an parameter vector β2 of dimension n−p such that (β,β2) is a
one-to-one transformation of µ in the neighborhood of interest and such that β2 = 0
if and only if µ ∈ Ω. The goodness of fit test consists of testing H0 : β2 = 0 against
the alternative that β2 is unrestricted. The components of the original parameter
vector β are the nuisance parameters for this test. In the generalized linear model
case, the implicit parameter vector β2 can be constructed by finding an n× (n− p)
matrix X2 such that (X, X2) is of full rank. Then Ha is the saturated model that
g(µi) = Xβ + X2β2 for some β and some β2.
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Let ˙̀
1 and ˙̀

2 be the score vectors for β and β2 respectively, and let I be the
Fisher information matrix, partitioned into I11, I12 and I22 as in Section 2. The
Fisher information for β2 adjusted for estimation of β is I2.1 and the score statistic
for testing H0 is

S = ˙̀T
2 I−1

2.1
˙̀
2

where ˙̀
2 and I2.1 are evaluated at β = β̂ and β2 = 0.

Let V = diag{v(µi)/wi} and write

e = V −1/2(y − µ)

for the vector of Pearson residuals. Also write

U1 = V −1/2 ∂µ

∂β

and
U2 = V −1/2 ∂µ

∂β2

.

It is straightforward to show that the score vectors are given by

˙̀
j = UT

j e

for j = 1, 2 and the information matrices are given by

Ijk = UT
j Uk

for j, k = 1, 2 [25] [27].
Write P1 for the matrix P1 = U1(UT

1 U1)−1UT
1 of the orthogonal projection onto

the column space of U1. Also write

U2.1 = (I − P1)U2

and P2.1 for the matrix
P2.1 = U2.1(UT

2.1U2.1)−1UT
2.1

of the orthogonal projection onto the column space of U2.1. Then P1 and P2.1 project
onto orthogonal subspaces and P1 + P2.1 = I since the dimensions of the subspaces
add to n.

We can rewrite

I2.1 = UT
2 U2 − UT

2 U1(UT
1 U1)−1UT

1 U2 = UT
2 (I − P1)U2 = UT

2.1U2.1.

We can also rewrite
˙̀
2 = (UT

2 − UT
2 P1)e = UT

2.1e

because evaluating at β = β̂ ensures that UT
1 e = 0 and hence P1e = 0. This shows

that the score statistic is

S = eT U2.1(UT
2.1U2.1)−1UT

2.1e = eT P2.1e = eT (P1 + P2.1)e = eTe

which the Pearson statistic. 2
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Example. Theorem 1 shows that the chisquare test for independence in a twoway
contingency table is a score statistic, based on the assumption that the counts are
independent and Poisson distributed. For multiway contingency tables, Theorem 1
shows that the score test of the hypothesis that any chosen subset of the pairs of faces
are independent yields a Pearson statistic.

We now consider the case where there are multiple observations for some or all of
the covariate combinations. In such cases it is usually more natural to associate the
saturated alternative with unique combinations of the explanatory variables rather
than to allow every µi to be different. The following corollary to Theorem 1 shows
that the score test statistic in such cases is naturally expressed in terms of the mean
response for each covariate-combination group. The score statistic in the corollary
is the Pearson goodness of fit statistic when the data has been reduced to sufficient
statistics for each covariate-combination group.

Corollary 1
Suppose that yij ∼ ED(µi, 1/wij), i = 1, . . . , n, j = 1, . . . , ni, are independent. The
score test statistic of H0, that the µi are functions of β, against the alternative Ha

that they are unrestricted, is given by

S =
n∑

i=1

wi·(ȳwi − µ̂i)2/v(µ̂i)

where µ̂i is the maximum likelihood estimator of µi, wi· is the sum of weights

wi· =
ni∑

j=1

wij

and ȳwi is the weighted mean

ȳwi =
1

wi·

ni∑
j=1

wijyij .

Proof. The weighted means ȳwi are sufficient for the µi, and ȳi ∼ ED(µi, 1/wi·).
The ȳwi are distributed as for the yi but with weights wi·, so the result follows im-
mediately from Theorem 1. 2

Example. Suppose that the yij are binary responses and that wij = 1 for all i and j.
Then

S =
n∑

i=1

ni(ri − p̂i)2/v(p̂i)
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where ri is the empirical proportion for the ith covariate-combination group, p̂i is the
estimated probability that yij = 1, and v(p̂i) = p̂i(1 − p̂i). If yi· =

∑ni
j=1 yij is the

number of successes for the ith group then the yi· are binomial(ni, pi) and

S =
n∑

i=1

(yi. − µ̂i)2/vi(µ̂i)

with µi = npi and vi(µi) = µi(ni−µi)/ni. This is the Pearson goodness of fit statistic
for the data summarized in the usual generalized linear model way as binomial counts
for each covariate-combination group.

Example. Paul and Banerjee [19] derive the score test for interaction in a twoway
contingency table with multiple counts in each cell. Corollary 1 includes Paul and
Banerjee’s Theorem 1 as a special case.

5 Extra Parameters in the Variance

Suppose now that there are extra parameters which affect the variance of the yi, but
not its mean, and which are outside the exponential dispersion model framework.
Let γ be the vector of extra parameters and let G be the parameter space for γ.
Suppose that for each fixed value of γ, the yi follow a generalized nonlinear model
with variance function µ → v(µ;γ). The values of γ effectively index a class of
generalized nonlinear models. This setup arises frequently when extra parameters
are introduced to accommodate overdispersion in generalized linear models [1] [2] [7]
[19].

It is straightforward to show that γ and β are orthogonal parameters. This follows
because

∂`

∂β
=

∂µ

∂β
V −1(y − µ)

and µ does not depend on γ. Therefore the cross derivative ∂2`/∂β∂γ will be linear
in y − µ and will have expectation zero.

Orthogonality of γ and β implies that estimation of γ does not affect the form of
the score statistics for goodness of fit. According to the theory of C(α) tests, γ may
be replaced in the score test statistics by any estimator which is O(n−1/2) consistent
without changing the distributional properties of S to first order. This gives the
following theorem.

Theorem 2
Suppose that for each γ ∈ G, y1, . . . , yn ∼ ED(µi, 1/wi) are independent with variance
function v(µ;γ). The C(α) goodness of fit statistic is

S =
n∑

i=1

wi(yi − µ̂i)2/v(µ̂i; γ̃)
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where γ̃ is any
√

n-consistent estimator of γ and µ̂i is the maximum likelihood esti-
mator of µi given γ = γ̃.

Corollary 2
Suppose that for each γ ∈ G, yij ∼ ED(µi, 1/wij), i = 1, . . . , n, j = 1, . . . , ni, are
independent with variance function v(µ;γ). The C(α) goodness of fit statistic is

S =
n∑

i=1

wi·(ȳwi − µ̂i)2/v(µ̂i; γ̃)

where γ̃ is any
√

n-consistent estimator of γ, µ̂i is the maximum likelihood estimator
of µi given γ = γ̃, the wi· are sums of weights and the ȳwi are weighted means.

The proofs of Theorem 2 and the corollary are similar to the proofs in Section 2.

Example. Suppose that yij follows a negative binomial distribution with mean µi

and variance function V (µ; c) = µ + cµ2, i = 1, . . . , n, j = 1, . . . , ni for each c ≥ 0.
Suppose that the µi are a function of a vector β of regression parameters. For fixed
values of c, the means ȳi are sufficient for the µi and are negative binomial with the
same variance function and weights ni. The C(α) goodness of fit statistic therefore
is

S =
n∑

i=1

ni(ȳi − µ̂i)2

µ̂i + c̃µ̂2
i

where c̃ is a
√

n-consistent estimator of c and µ̂i is the maximum likelihood estimator
of µi with c = c̃. This includes Theorem 3 of Paul and Banerjee (1998).

One possible estimator for γ is the maximum likelihood estimator. An alternative
estimation method is to solve S = n − p with respect to γ. This estimator is often
preferred in overdispersion contexts because it is evidently a consistent estimator
based only on the first and second moments of the yi and therefore has a quasi-
likelihood flavor (Breslow, 1990). Obviously the score statistic S is no longer useful
as a goodness of fit statistic if γ is estimated by either of the above methods.

If there are repeat observations for covariate combinations, then an estimate of γ
may be obtained from the ‘pure error’ or within-covariate combination variability. In
this approach, γ can be estimated by solving

n∑
i=1

ni∑
j=1

wij(yij − ȳwi)2

v(ȳwi;γ)
=

n∑
i=1

(ni − 1).

With such a estimator for γ, S still has meaning as a goodness of fit statistic.
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6 Unknown Dispersion Parameter

All the above results have assumed that φ = 1. If φ is unknown, then both ˙̀ and I
are divided by φ and the score statistic for goodness of fit for a generalized nonlinear
model becomes

S =
n∑

i=1

wi(yi − µ̂i)2

φv(µ̂i)
.

The appearance of the unknown scale parameter φ in S means that the statistic is
no longer useful for judging goodness of fit. The statistic leads instead, by equating
S to its expectation, to the so-called Pearson estimator of φ,

φ̃ =
1

n− p

n∑
i=1

wi(yi − µ̂i)2

v(µ̂i)

which is the default estimator of φ in generalized linear model functions in the sta-
tistical programs S-Plus and R. Other estimators of φ are discussed by Jørgensen
[11].

When there are repeat observations, the difference between the full version of the
score statistic in Theorem 1 and the reduced form in Corollary 1 can be used to define
a ‘pure error’ estimate of the dispersion parameter φ,

φ̃pure =
1∑

(ni − 1)

n∑
i=1

ni∑
j=1

wij(yij − ȳwi)2

v(ȳwi)
.

In the case of normal linear regression, this is the well known ‘pure error’ estimator
of the variance. With the use of this this estimator, the score statistic recovers its
use as a goodness of fit statistic, but now as a generalized F -statistic rather than
chisquare. Substituting the pure error estimator into the score test for the reduced
data gives

F =
∑

(ni − 1)
n− p

n∑
i=1

wi·(ȳwi − µ̂i)2

φ̃purev(µ̂i)
.

If the yij are approximately normal, then F follows approximately an F -distribution
on n− p and

∑
(ni− 1) degrees of freedom under the null hypothesis. This is asymp-

totically true for example as the weights wij → ∞ or the dispersion φ → 0, because
any exponential dispersion model ED(µ, φ) tends to normality as φ → 0 [11, 12]. The
F statistic above is a generalization of the normal theory equivalents, described for
example by Weisberg [28, Section 4.3].

Dedication

This article is in honor of Terry Speed, from whom I learned generalized linear models
while an undergraduate student in Perth, Western Australia. Terry’s enthusiasm for
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statistics and science was and remains infectious. The topic of this article partly
arises from a more recent conversation with Terry.

Gordon K. Smyth, Division of Genetics and Bioinformatics, Walter and Eliza Hall
Institute of Medical Research, Melbourne, Australia, smyth@wehi.edu.au.
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