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1 Introduction

Water is a very important asset. It supports natural environments, includ-
ing diverse flora and fauna, and is essential to agriculture, industry and
economic growth. It also has an important role in recreational activities
and in contributing to overall quality of life. In Australia the coastal zone
and associated river systems are subject to increasing levels of development
and support approximately 75% of the population.

Management of water environments requires an understanding of the im-
pacts on water quality and an understanding of the effectiveness of man-
agement actions. Monitoring programs to assess water quality typically aim
to assess condition (whether or not water quality meets specified criteria)
and trend (whether water quality is getting better or worse). In the state
of Queensland in Australia, the Environment Protection Agency (EPA)
collects information which is used in government reporting and setting li-
cense conditions for industry as well as in determining the effectiveness of
environmental policy and management.

The Queensland EPA began a state-wide water quality monitoring program
in 1992 and there is now, after nearly 10 years of the program, a strong
need to assess what trends are apparent from the accumulated data. Trend
analyses should incorporate seasonal patterns and other factors such as
changes in rainfall which are likely to impact on water quality. More gen-
eral questions include (i) assessment of regional trends, (ii) assessment of
relationships between indicators, (iv) setting of water quality guidelines for
impacted streams and (v) design of future sampling schemes.



2 Ambient Water Quality Data

Although water quality monitoring is an international concern (Barnet and
O’Hagan, 1997; Ford et al, 1993; Skalski, 1990; Urquhart et al, 1998; Weter-
ing and Groot, 1986), methods for assessing trends and for setting reference
guidelines are surprisingly undeveloped. This article describes methods for
statistical analysis of water quality indicators. A censored regression strat-
egy is used to accommodate arbitrary detection limits for the indicator
variables. A heavy-tailed response distribution is assumed to give a high
degree of insensitivity to outliers. Harmonic terms are used to model period
seasonal trends. Regression splines are used to model nonlinear long-term
trends. The use of regression methodology allows covariates such as flow
rate, temperature or tidal height to be incorporated into the model.
Independently of our study, Morton (1997) and Nathan et al (1999) have
recently developed trend analyses for water quality variables which are
similar in spirit to those given here. Our methods differ from theirs in
terms of our explicit handling of the detection limits and in the strategy
which we use to achieve robustness. Our methods are amongst other things
more suited to estimating distributional quantiles which are used to set
and assess water quality guidelines because we accommodate heavy-tailed
responses rather than rejecting observations which are outside the normal
range.

2 The EPA Monitoring Program

The Queensland Environmental Protection Agency began a large scale wa-
ter quality monitoring program about 10 years ago, collecting monthly
data on a range of water quality indicators at over 500 sites through-
out the state of Queensland in Australia. The indicators fall into three
broad groups. The concentration of chlorophyll-a (CHLA) is an indication
of biomass in the water. The concentrations of organic nitrogen (ORGN),
ammonia (AMMN), oxidised nitrogen (OXIDN), filterable reactive phos-
phorus (FRP) and total phosphorus (TP) indicate the available nutrients in
the water. Measurements of the physical characteristics of the water include
dissolved oxygen (DO), suspended solids (SS), turbidity (TURB), con-
ductivity (COND), temperature (TEMP), acidity (PH) and Secchi depth
(SECCHI). The Secchi depth is the depth to which a white disc can be
lowered into the water before disappearing from sight, a measure of wa-
ter clarity. Covariate information such as stream flow rate (FLOW) and
tidal cycle information is also available from other sources. In this article
we concentrate on data from the Logan River catchment area in South
East Queensland and from the Herbert River catchment area in far north
Queensland.
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3 Inmitial Data Analysis Considerations

Transformations. CHLA, the nutrient concentrations, SS, TURB and
SECCHI were analysed on the logarithmic scale in order to produce roughly
symmetric distributions. TURB was offset by 1 unit and SECCHI depth
was offset by 0.2m to avoid taking the logarithm of zero. The other variables
were analysed on their original scales.

Detection Limits. CHLA and the nutrient indicators are subject to de-
tection limits below which the exact concentration cannot be determined.
Such observations are left censored at the detection limit. For several in-
dicators the detection limits changed during the course of the monitoring
program as more sophisticated testing procedures were put in place. SEC-
CHI depth is both right and left censored, right censoring occurring when
the SECCHI depth exceeds the depth of the stream.

It is been argued in the literature (Haas and Scheff, 1990) that left censored
observations can be set equal to half the detection limit for the purposes
of computing summary statistics. This strategy is however likely to be
satisfactory only for variables which are approximately symmetric on their
original scales and when the detection limit is not too far into the tail of
the distribution. Neither of these conditions is met for the water quality
indicators.

Outliers. Many of the water quality records exhibit a small percentage
of outlier observations which are much larger or smaller than the general
body of values. Even in the absence of distinct outliers, most of the water
quality indicators exhibit variation which is more heavy-tailed than the
normal distribution. A primary consideration for any data analysis method
is that it be insensitive to outliers.

4 Approaches to Trend Detection

Rank-based methods. We consider three major approaches to detecting
trends in the water quality indicators. The most popular method in the
environmental literature for testing for trend is Kendall’s seasonal trend
test, which is a rank-based test for a monotonic trend (Hirsch et al, 1982;
Helsel and Hirsch, 1992). This test has many advantages. It is (i) unaffected
by whether the data is transformed or not, (ii) insensitive to outliers, (iii)
insensitive to what value is substituted for observations below the detection
limit and (iv) nearly as powerful as tests based on normality when the
data actually is normal. From our point of view the major drawback of
Kendall’s seasonal trend test is that it does not allow for the possibility of
non-monotonic trends and cannot be extended to allow for that possibility.
Kendall’s test is also technically invalid if the detection limit changes during
the period of the study, as it does for the Queensland water monitoring
program, as it is not then possible to resolve comparisons between censored
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FIGURE 1. Log-ammonia concentration for the Stone River with maximum like-
lihood seasonal and long term trends.

observations at different detection limits. Other disadvantages are that the
test does not naturally allow for the incorporation of covariate information,
such as flow data, and that separate methods must be used to estimate the
rate of trend, to extract seasonal components, and to estimate quantiles.
If a trend is detected using Kendall’s seasonal trend test, it is usual to
estimate the trend slope and intercept using Theil-Sen’s robust line (Helsel
and Hirsch, 1992). The slope estimate is simply the median of the slopes
through all possible pairs of points.

Figure 1 shows the log-ammonia concentrations in the Stone River just
before it flows into the Herbert River. Notice that the last observation is
censored and that there is a single very large outlier in December 1996,
probably caused by a misreading. Kendall’s season trend test gives a P-
value of 0.040, providing evidence that ammonia levels have risen in the
Stone River. The slope is estimated to be 0.108 on the logarithmic level,
corresponding to an increase of 71% over five years. If the large outlier is
removed the P-value increases to 0.051 and the slope decreases to 0.097.
Robust Regression. Robust regression is a modification of ordinary least
squares regression which down-weights or eliminates observations with large
residuals. A promising method is the high efficiency/high breakdown MM-
estimation procedure developed by Yohai (1987). We used MM-regression
to fit a general trend, given by a regression spline with 3 df, and a periodic
seasonal component to the Stone River log-ammonia concentrations. The
trend line successfully ignores the large outlier, and also the censored ob-
servation which is a less noticeable low outlier. The fitted curve does not
indicate an overall increasing trend but is strongly suggestive that there
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has been non-monotonic variation in ammonia levels during the years of
the study. One drawback of robust estimation is that it is relatively difficult
to test hypotheses under the robust framework. In this case, tests based on
the standard errors of the estimators suggest that neither the linear trend
nor the nonlinear trend are significant. On the other hand, the robust F-
test suggests that both the linear and the nonlinear trends are significant.
The performance of hypothesis tests in the robust regression framework is
not yet well understood.

Censored Regression. Censored regression is a maximum likelihood re-
gression technique which explicitly allows for the fact that an exact value
is not known for the censored observations. Censored regression is not or-
dinarily a robust technique. However it is possible to make the method
relatively insensitive to outliers by choosing a response distribution which
is heavier-tailed than the normal. Censored regression is implemented in
S-Plus through the function censorReg (Meeker and Duke, 1981). We fit
censored regressions using the logistic (or log-logistic) response distribution.
The logistic distribution has a very similar shape to the normal distribution
except in the tails of the distribution where it has much heavier tails.
Censored regression is the most powerful and the most flexible of the three
methods we consider. It (i) will detect smaller trends with greater precision
than the other methods, (ii) allows covariate information and nonlinear
trends to be incorporated easily, (iii) allows hypotheses to be reliably tested
and (iv) produces estimates for any desired quantile of the water quality
indicators. Censored regression, as does robust regression, assumes that
the water quality indicators have approximately symmetric variation on a
suitably be transformed scale. The transformations suggested in Section 3
have been found satisfactory for this purpose. Neither robust nor censored
regression require the observations to be equally spaced at monthly or any
other intervals.

We fitted a censored regression with seasonal and nonlinear trends to the
Stone River ammonia concentrations. We treat the concentrations as hav-
ing a log-logistic distribution. Figure 1 shows the fitted trend with both
seasonal and nonlinear components. It is apparent that the maximum likeli-
hood fit is resistant to the outlier. The estimated trend is virtually identical
to that from the robust regression.

Using the maximum likelihood approach it is possible to reliably test for
the significance of the trends. Both the seasonal component (P = 0.0006)
and the nonlinear trend (P = 0.0004) are highly significant. However the
trend does not have a strong linear component (P = 0.07). We conclude
that the ammonia concentration has varied over the five years of the study
but there is no overall increasing trend. We feel that Kendall’s trend test
is somewhat mislead by the non-monotonic nature of the trend in this
data sequence. The above P-values change slightly when the large outlier
is removed. The changes do not affect the conclusions and are no larger
than the corresponding change for Kendall’s test.



6 Ambient Water Quality Data
5 Trend Analyses

Time Trends. Many of the indicator variables have substantial annual
cycles. We estimate these periodic cycles using a cosine term with a period
of one year plus a harmonic term with a 6 month period. The seasonal com-
ponent consumes 4 df in the model fits. The overall trend was estimated by
a linear trend in time. Long term variation from year to year was estimated
by a regression spline on year with 3 df. This was found sufficient for the
10 year period considered in this study. The linear component is included
in the regression spline, so the 3 df for long term trend can be decomposed
into 1 df for linear trend and 2 df for nonlinear trend.

Covariate Information. Much of the seasonal variation and, sometimes,
the long term trend as well can be explained by variation in stream flow
rate, temperature and tide height. Flow rate is highly variable as it includes
annual monsoon rains and occasional major storms. Some streams experi-
ence zero flow at certain times and at other times are in flood conditions.
The effect of flow rate on indicator variables can be expected to be nonlin-
ear. We have used a regression spline with 3 df on log-flow rate offset by
1 unit to incorporate possible nonlinear effects for flow rate. Temperature
and tide height are adequately explained using linear trend terms.
Autocorrelation. We have found that the correlation between successive
observations was low after suitable modelling of the trend. We have there-
fore treated the monthly measurements as independent. If observations
were made at smaller intervals in time, then the methodology would need
to be revised to incorporate a time series error structure.

6 Results

We give brief results for one site, the Logan River at a site 77km upstream.
Table 1 gives the percent of each indicator which is explained by seasonal
variation and by linear and nonlinear trends. The covariates temperature
and flow rate were also included in the regression. The percents are com-
puted using percent changes in the log-likelihood as the predictors were
added sequentially into the regression. Figure 2 gives time series plots for
four of the indicators, together with seasonal, linear and nonlinear trend
lines where these are significant at 5%.

We find that all of the physical indicators are strongly affected by flow
rate, as also are TP, ORGN and OXIDN. Variables such as SS and TURB
increase with flow rate which PH decreases. CHLA, AMMN and FRP were
little affected by flow rate. CHLA and several of the nutrient levels, ORGN,
FRP and TP were found to increase with temperature. FRP and COND
also had strong seasonal patterns unexplained by temperature and flow.
Strong linear trends are apparent over the period for CHLA, FRP and
COND and strong nonlinear trends are apparent for CHLA and COND.
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FIGURE 2. Logan River 77km upstream.
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TABLE 1. Logan River 77km. Percent of variability of indicator predicted by
various predictors.

Indicator Temp Flow Seas Linear Nonlin

CHLA 28.6 4.6 6.8 7.8 7.2
ORGN 11.8  23.2 3.5 0.0 2.3
OXIDN 7.3 19.0 1.6 5.1 1.9
AMMN 2.3 1.1 9.8 2.5 3.6
FRP 13.8 3.5 13.7 12.9 2.0
TP 114 33.2 7.4 1.8 3.9

SS 8.2 441 2.1 2.0 5.2

PH 1.2 315 3.0 24 2.9

DO 2.8 305 4.0 0.2 3.1
COND 3.1 174 119 10.6 12.9
TURB 76  38.2 8.0 2.5 4.5
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