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Abstract

There are a variety of methods in the literature which seek to make
iterative estimation algorithms more manageable by breaking the iterations
into a greater number of simpler or faster steps. Those algorithms which
deal at each step with a proper subset of the parameters are called in this
paper partitioned algorithms. Partitioned algorithms in effect replace the
original estimation problem with a series of problems of lower dimension.
The purpose of the paper is to characterize some of the circumstances under
which this process of dimension reduction leads to significant benefits.

Four types of partitioned algorithms are distinguished: reduced objec-
tive function methods, nested (partial Gauss-Seidel) iterations, zigzag (full
Gauss-Seidel) iterations, and leapfrog (non-simultaneous) iterations. Em-
phasis is given to Newton-type methods using analytic derivatives, but a
nested EM algorithm is also given. Nested Newton methods are shown to
be equivalent to applying to same Newton method to the reduced objec-
tive function, and are applied to separable regression and generalized linear
models. Nesting is shown to general improve the convergence of Newton-
type methods, both by improving the quadratic approximation to the log-
likelihood and by improving the accuracy with which the observed infor-
mation matrix can be approximated. Nesting is recommended whenever a
subset of parameters is relatively easily estimated. The zigzag method is
shown to produce a stable by generally slow iteration; it is fast and rec-
ommended when the parameter subsets have approximately uncorrelated
estimates. The leapfrog iteration has less guaranteed properties in gen-
eral, but is similar to nesting and zigzaging when the parameter subsets are
orthogonal.

∗Smyth, G. K. (1996). Partitioned algorithms for maximum likelihood and other nonlinear
estimation. Statistics and Computing, 6, 201–216.
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1 Introduction

Statisticians have given increased attention to nonlinear models in recent years as
computing resources have become ever more readily available. See for example the
recent books by Ratkowsky (1983, 1989), Gallant (1987), Bates and Watts (1988),
Seber and Wild (1989), Ross (1990) and Chambers and Hastie (1992). Usually the
parameters of such models must be estimated iteratively. There are a variety of
methods in the literature or in common usage which seek to make iterative estima-
tion algorithms more manageable by breaking the iterations into a greater number
of simpler or faster steps. Examples are separable least squares (Ross, 1990, Sec-
tion 5.4), the Gauss-Seidel method (Ortega and Rheinboldt, 1970, Section 7.4;
Thisted, 1988, Section 4.3.4), two-stage least squares (Seber, 1989, Section 6.2.3)
and other methods are discussed in Ross (1970). In this paper those algorithms
which deal at each step with a proper subset of the total parameter vector are
called partitioned algorithms. Partitioned algorithms in effect replace the original
estimation problem with a series of problems of lower dimension. The purpose of
this paper is to characterize some of the circumstances under which this process
of dimension reduction leads to significant benefits.

Let θ be the p-dimensional parameter vector to be estimated. In general it will
be assumed that there is already available some unpartitioned algorithm, repre-
sented by the updating equation θk+1 = F (θk), which may or may not converge for
the particular data set under consideration but which has the desired estimator
θ̂ as a fixed point. When θ is partitioned into subvectors θ1 and θ2, the updating
equation will be written formally as

θk+1
1 = F1(θ

k
1 , θ

k
2)

θk+1
2 = F2(θ

k
1 , θ

k
2)

(1)

where F1 and F2 are just the corresponding partition of F .
One class of problems for which partitioning is useful are those in which some

parameters are much easier to estimate than others. This situation arises in non-
linear regression when some parameters enter the fitted values linearly. Consider
for example the exponential growth model y = θ1 exp(θ2x) to be fitted to data
pairs (xi, yi), i = 1, . . . , n. An old technique is to note that the sum of squares is
easily minimized with respect to θ1 for any given value of θ2 by the linear least
squares estimator θ̂1(θ2) =

∑
yi exp(θ2xi)/

∑
exp(2θ2xi). This leaves the problem

of minimizing with respect to θ2, which can be accomplished by substituting θ̂1(θ2)
into the second part of (1), i.e.,

θk+1
2 = F2(θ̂1(θ

k
2), θk2)

which is an example of what is called a nested iteration in this paper, since the
estimation of θ1 is nested within that of θ2. Note that the nested iteration will
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necessarily have the least squares estimate θ̂2 as a fixed point, and has the advan-
tage over the original iteration of lower dimension. This simple strategy is often
very effective in practice. The nested iteration has the effect of restricting the
working parameter estimates to the locus θ1 = θ̂1(θ2).

A second class of problems for which partitioning is useful are those for which
the parameters fall into two or more groups with approximately uncorrelated
estimates. For example consider the following heteroscedastic regression model
(Aitkin, 1987; Smyth, 1989). Suppose observations yi are normal and independent
with means µi = β1+β2xi and variances σ2

i = exp(γ1+γ2zi) where the xi and zi are
observed covariates. Given the variances, the βi are estimated by linear regression
of the yi on the xi with weights 1/σ2

i . Given the means, the γi can be estimated by
gamma regression of the squared residuals (yi − µi)2 on the zi. Cycling between
these two regressions leads, if convergence is achieved, to maximum likelihood
estimates for all parameters. The iteration here is

θk+1
1 = θ̂1(θ

k
2)

θk+1
2 = θ̂2(θ

k+1
1 ),

(2)

where θT1 = (β1, β2)
T and θT2 = (γ1, γ2)

T and θ̂1(θ2) and θ̂2(θ1) maximize the
likelihood with respect to θ1 and θ2 respectively while keeping the other fixed.
The iteration zigzags between the two surfaces θ1 = θ̂1(θ2) and θ2 = θ̂2(θ1).
This type of iteration is used a great deal by statisticians, so it is important to
understand its properties.

In this paper, four types of partitioned algorithms are distinguished.
1. Reduced objective function methods. Given the objective function ` to be

maximized with respect to parameter vectors θ1 and θ2, the partial estimate θ̂2(θ1)
is substituted into ` to obtain r(θ2) = `(θ̂1(θ2), θ2). The reduced objective function
r(θ2) may then be maximized by any algorithm, but is often passed to a derivative
free method.

2. Nested (partial Gauss-Seidel) iterations. Given the iteration function (1),
discard θk+1

1 at each iteration and replace it with θ̂1(θ
k+1
2 ). Alternatively, replace

it with θ̃1(θ2), where θ̃1(θ2) is the value of θ1 which solves θ1 = F1(θ1, θ
k+1
2 ).

3. Zigzag (full Gauss-Seidel) iterations. To solve the simultaneous normal
equations ˙̀

1(θ1, θ2) = ˙̀
2(θ1, θ2) = 0, alternate between solving ˙̀

1 = 0 with respect
to θ1 and ˙̀

2 = 0 with respect to θ2. Here ˙̀
1 and ˙̀

2 are the derivatives of ` with
respect to θ1 and θ2 respectively. This gives the zigzag iteration (2). Alternatively
we could apply the Gauss-Seidel method to the iteration functions and cycle be-
tween solving θ1 = F1(θ1, θ2) with respect to θ1 and θ2 = F2(θ1, θ2) with respect
to θ2.

4. Leapfrog (non-simultaneous) iterations. Given iteration functions for θ1 and
θ2, use the already updated value of θ1 to update θ2, i.e.,

θk+1
1 = F1(θ

k
1 , θ

k
2)

θk+1
2 = F2(θ

k+1
1 , θk2),

In the heteroscedastic regression example above, performing only one cycle of the
gamma regression at each iteration would result in a leapfrog iteration.

3



It has been known for some time that reduced objective function methods
are useful in conjunction with optimization methods that do not use derivatives
(Ross, 1970; Lawton and Sylvestre, 1970). The calculation of analytic derivatives
is however very desirable when there are many parameters, when the parameters
are highly correlated or when high accuracy is otherwise required. See for example
Seber and Wild (1989, p. 611). Special attention is given in this paper to Newton-
type methods based on first and second derivatives. In the next section it is shown
that nested Newton methods are equivalent to applying the same Newton method
to the reduced objective function. In Sections 5 and 6 it is shown that nesting
generally improves convergence of Newton-type methods, both by improving the
quadratic approximation to the log-likelihood and by improving the accuracy with
which the observed information matrix can be approximated.

Section 5 also gives a nested EM algorithm, and shows that to be effective
nesting should be applied to those parameters about which there is relatively
least information in the incomplete data.

Nested algorithms are never worse than full algorithms, so nesting can be
recommended generally whenever it is easily implemented. The zigzag method
produces a stable but generally slow iteration; it is fast and recommended when
θ1 and θ2 have approximately uncorrelated estimates. The leapfrog iteration has
less guaranteed properties in general, but has similar properties to nesting and
zigzaging when θ1 and θ2 are orthogonal.

In practice, Newton methods are often implemented with modifications de-
signed to ensure convergence. This is especially true of the Gauss-Newton algo-
rithm for nonlinear least squares, which is now almost always implemented with
Levenberg-Marquardt damping or a line search method. Such methods can be ex-
tended to the general likelihood context (Jørgensen, 1984; Osborne, 1987; Thisted,
1988), although they are still seldom used with exponential families or generalized
linear models. In this paper, the algorithms are examined unmodified so as to not
obscure their structure and in the belief that it is easier to modify an algorithm
that is already well behaved. It is recommended that in practice damping or line
search methods be applied to the appropriate partitioned algorithm. Some results
proved here apply directly to modified algorithms. In particular, the limiting con-
vergence rate results of Section 5 apply directly to Levenberg-Marquardt modified
iterations provided that it is arranged that the damping parameter converges to
zero as the iteration converges.

Nested and reduced objective function methods arise naturally from an infer-
ential point of view when θ1 is to be treated as a nuisance parameter, since r(θ2)
is the profile likelihood for θ2. On the other hand, the zigzag iteration is natural
when θ1 and θ2 correspond to interpretable submodels as in the heteroscedastic
example.

Section 2 of this paper discusses nested Newton-type methods, Section 3 dis-
cusses the zigzag iteration and Section 4 discusses their application to nonlin-
ear regression. Convergence of the algorithms is discussed in Sections 5 and 6.
Section 5 deals with local convergence rates close to the stationary value, while
Section 6 deals with global convergence and the quadratic approximation to the
log-likelihood function.
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2 Nested Newton-type Algorithms

Let `(θ) be the log-likelihood function of a p-dimensional parameter vector θ.
The Newton-Raphson algorithm attempts to maximize ` by maximizing instead
its quadratic Taylor series expansion at the current working value. The iteration
function is

θk+1 = θk − ῭−1(θk) ˙̀(θk)

where ˙̀ is the gradient or score vector and −῭ is the observed information matrix.
More generally Newton-type algorithms have iteration functions of the form

θk+1 = θk + A−1(θk) ˙̀(θk)

where A is a suitably chosen approximation to −῭. In statistics the most common
choice for A is the expected information I, because I has a particularly elegant
form when ` is an exponential or curved exponential family. The resulting iteration
is known as Fisher’s method of scoring (Rao, 1973; Osborne, 1992).

Now suppose that θ is partitioned into θ1 and θ2 and that θ1 is to be treated as
a nuisance parameter. In an often overlooked paper, Richards (1961) derived the
Newton-Raphson iteration for maximizing the profile likelihood r(θ2). Letting

῭=

(
῭
11

῭
12

῭
21

῭
22

)

be the obvious partition of ῭, Richards shows that the derivatives of r(·) are given
by ṙ(θ2) = ˙̀

2(θ̂1(θ2), θ2) and r̈(θ2) = ῭
2.1(θ̂1(θ2), θ2) where ῭

2.1 = ῭
22 − ῭

21
῭−1
11

῭
12.

The profile Newton-Raphson iteration therefore is

θk+1
2 = θk2 − ῭−1

2.1
˙̀
2

where all quantities on the right hand side are evaluated at θk2 and θ̂1(θ
k
2).

If we wish to instead apply scoring to the profile likelihood we meet the diffi-
culty that the expected value of −῭

2.1 will seldom be simple or useful to evaluate.
A more amenable alternative is to use the nested scoring algorithm, which is de-
veloped as follows. We first calculate the partial iteration functions F1 and F2 for
Newton-type algorithms. It is useful to have the block Cholesky decomposition
of A,

A =

(
I 0

A21A
−1
11 I

)(
A11 0
0 A2.1

)(
I A−111 A12

0 I

)

with A2.1 = A22 − A21A
−1
11 A12. This allows us to write

A−1 =

(
I −A−111 A12

0 I

)(
A−111 0

0 A−12.1

)(
I 0

−A21A
−1
11 I

)

so that the Newton-type iteration can be partitioned as

θk+1
1 = F1(θ

k
1 , θ

k
2) = θk1 + A−11

˙̀
1 − A−11 A12A

−1
2.1

˙̀
2.1

θk+1
2 = F2(θ

k
1 , θ

k
2) = θk2 + A−12.1

˙̀
2.1
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where ˙̀
2.1 = ˙̀

2 − A21A
−1
1

˙̀
1. This shows that the nested Newton-type iteration is

θk+1
2 = F2(θ̂1(θ

k
2), θk2) = θk2 + A−12.1

˙̀
2

noting that ˙̀
2.1 = ˙̀

2 at θ1 = θ̂1(θ2). Hence the nested Newton-Raphson itera-
tion is equivalent to Newton-Raphson applied directly to the profile likelihood,
while other Newton-type algorithms approximate −῭

2.1 with the corresponding
partitioned matrix A2.1.

A nested iteration can be thought of as equivalent to a full Newton-type iter-
ation with θk+1

1 discarded and replaced by θ̂1(θ2) (see also Bates and Lindstrom,
1986). For some problems, it may be usefully programmed this way. In this sense it
is a natural method of restricting the iteration to the locus {(θ1, θ2) : θ1 = θ̂1(θ2)}.
A possible complication is that θ̂1(θ2) can fail to be unique for some θ2 even though
the likelihood has a well-defined global maximum. In such cases the above locus is
disconnected. While this does not prevent the nested iteration from being defined,
nesting is most likely to be useful when θ̂1(θ2) is available in closed form or can
otherwise be guaranteed to be unique.

Example 2.1. Suppose that y1, . . . , yn is a sample from a population such that
Z = (Y λ − 1)/λ is N(µ, σ2) for some λ > 0 (Box and Cox, 1964), and consider
the problem of estimating λ. The conditional maximum likelihood estimators for
µ and σ2 are µ̂(λ) = z̄ and σ̂2(λ) = s2z = 1

n

∑
(z2i − z̄)2 respectively, and at these

values ῭
µ,σ2 = 0. The nested Newton-Raphson iteration for λ therefore is

λk+1 = λk − ῭−1
λ|µ,σ2

˙̀
λ

with
῭
λ|µ,σ2 = ῭

λ − ῭−1
µ

῭2
λµ − ˙̀−1

σ2
῭2
λσ2

Explicit expressions for these derivatives are

˙̀
λ =

∑
log yi − σ−2

∑
(zi − µ)

dzi
dλ

and

λ̈λ|µ,σ2 = − 1

σ2

∑(dzi
dλ

)2

+ (zi − µ)
d2zi
dλ2

− 1

nσ2

(∑ dzi
dλ

)2

− 2

nσ4

[∑
(zi − µ)

dzi
dλ

]2

The above iteration is equivalent to applying Newton-Raphson to the profile like-
lihood

r(λ) = `(µ̂(λ), σ̂2(λ), λ) = −n
2

log 2πs2z −
n

2
+ (λ− 1)

∑
log yi

Example 2.2. Jørgensen (1987) has shown that there exists a generalized linear
model distribution with power variance function var(Y ) = σ2µγ, µ = E(Y ), for
each γ ≥ 1 or ≤ 0. If 1 < γ < 2 then the distribution is a Poisson mixture
of gamma distributions, Y =

∑N
i=1Xi where N is Poisson(λ) and the Xi are

gamma(α,δ) with λ = µγ/σ2(2− γ), α = (2− γ)/(γ − 1) and δ = σ2(γ − 1)µγ−1
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(Jørgensen, 1987, p. 140; Smyth, 1992). This is a mixed distribution, continuous
on the positive half-line and with probability mass at zero. It is of considerable
interest for modelling non-negative data with exact zeros, and in general it will
be necessary to estimate γ. The log-density function can be written

log f(y;µ, σ2, γ) =

 −
1
σ2 + log δ0 y = 0

1
σ2

(
y µ

1−γ

1−γ −
µ2−γ

2−γ

)
− log y + logW (y, σ2, γ) y > 0

where δ0 is the Dirac delta function at zero and W is Wright’s Bessel function,

W (y, σ2, γ) =
∞∑
j=1

λj(y/δ)jα

j!Γ(jα)

(Tweedie, 1984, p. 592). In generalized linear model applications the mean of each
observation will be assumed to be a function of a vector β of regression coefficients.
For any given value of γ, maximum likelihood estimates of β can be calculated
as for a generalized linear model (McCullagh and Nelder, 1989), although the
estimation of σ2 does require maximizing an infinite series. In calculating the
complete information matrix for all parameters, β, σ2 and γ, it is natural to
put those derivatives involving β to their expectations, in particular E(῭

β,σ2) =

E(῭
β,γ) = 0. On the other hand it is more natural to use observed information

for σ2 and γ since ῭
σ2 , ῭

γ and ῭
σ2,γ involve infinite series and have expectations

which are not easily evaluated. The resulting information matrix is a mixture
of observed and expected information. The corresponding nested Newton-type
algorithm for γ is

γk+1 = γk + A−1γ|β,σ2
˙̀
γ

where
−Aγ|β,σ2 = ῭

γ − ῭−1
σ2

῭2
σ2,γ

and all quantities are evaluated at β̂(γ) and σ̂2(γ).

Example 2.3. The hyperbolic distribution has density

f(y;µ, δ, α, β) = a(δ, α, β) exp[α
√
δ2 + (y − µ)2 + β(y − µ)]

where a(δ, α, β) is a normalizing constant, and is characterized by the fact that
log f is a hyperbolic function of y (Barndorff-Nielsen, 1977). By contrast, the
normal distribution gives a parabola. The hyperbolic distribution is often used
to model particle size distributions. Let ri be the proportion of a sample which
is between sizes si and si+1, i = 1, . . . , k, with s1 = 0 and sk+1 = ∞. Then
the parameters may be estimated by minimizing the Kullback-Lieber distance
between the empirical and theoretical probabilities

` =
k∑
i=1

ri log pi

where pi is the probability mass between si and si+1. First and second deriva-
tives of ` are given by Jensen (1988). Experience has shown that maximizing `
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can be a difficult numerical problem (Fieller, Flenley and Olbricht, 1992). The
greatest difficulty is associated with estimation of the scale parameter δ, and the
nested Newton-Raphson iteration for δ with the other three parameters nested has
proved to be more stable that the full Newton-Raphson for all four parameters
simultaneously (Jensen, 1988).

3 Zigzag Algorithms

The zigzag iteration (also known as the Gauss-Seidel method) given in the intro-
duction extends to any number of parameter subsets. Let θ1, . . . , θm be, possibly
vector, parameters. The zigzag method for maximizing the log-likelihood ` maxi-
mizes ` with respect to each θj in turn. Ortega and Rheinboldt (1970) and Thisted
(1987) consider the possibility of cycling through the θj in different orders, for ex-
ample choosing at each stage the θj for which is ∂`/∂θj is farthest from zero, or
cycling first θ1, . . . , θm then θm, . . . , θ1, but in this paper it will be assumed that
the θj are cycled in index order. Maximizing ` with respect to θj will itself in gen-
eral require iteration. This will be called inner iteration, while one cycle through
the θ1, . . . , θm will be called an outer iteration. If, for example, scoring is used for
the inner iterations, the algorithm will be called zigzag scoring.

In each inner iteration the likelihood is considered to be a function of θj only,
the other parameters being fixed. This may be called the submodel corresponding
to θj (Smyth, 1989). If θ1, . . . , θm are orthogonal, then standard errors and score
tests calculated in any submodel are correct for the complete likelihood.

If the parameters are orthogonal, the leapfrog scoring iteration for θ1, . . . , θm
is

θk+1
1 = θk1 + I−11

˙̀
1(θ

k
1 , . . . , θ

k
m)

θk+1
2 = θk2 + I−12

˙̀
2(θ

k+1
1 , θk2 , . . . , θ

k
m)

...

θk+1
m = θkm + I−1m ˙̀

m(θk+1
1 , . . . , θk+1

m−1, θ
k
m).

Zigzag scoring consists of iterating each of the m equations to convergence before
going on to the next.

Example 3.1. Consider the multiple regression model, E(Yi) = β1x1i+ . . .+βmxmi
with var(Yi) = σ2. The zigzag iteration for the βj estimates β1 by regressing
y− βk2x2 − . . .− βmxm on x1, and so on through the other βj. In Section 5 it will
be shown that this iteration is very slow unless the covariates are orthogonal.

Example 3.2. Consider the rational model E(Yi) = (α1x1i + . . .+ αpxpi)/(β1z1i +
. . . + βpxpi). If the βj are considered fixed, the αj may be estimated by linear
regression. If the αj are fixed, the βj may be estimated using a generalized linear
model with reciprocal link function.

Example 3.3. Suppose that the Yi are normal, gamma or inverse-Gaussian, with
a link-linear regression model

g(µi) = βTxi
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for the means. Suppose that each Yi has it’s own dispersion parameter φ and
suppose a link linear model

h(φi) = γT zi

for the dispersions. Then the submodels for the mean and dispersion parameters
respectively are themselves generalized linear models (Smyth, 1989). This includes
the often used heteroscedastic regression model with log-linear variances (Aitkin,
1987; Verbyla, 1993). When the mean model is just a linear regression, there is
no inner iteration in the mean submodel. In that case the leapfrog iteration for
β and γ is equivalent to a nested iteration with the iteration for β nested within
that for γ, while the zigzag iteration for β and γ is equivalent to a nested iteration
with the iteration for γ nested within that for γ.

Example 3.4. Let Yi be normal with means µi and autoregressive errors. Let α
be the autoregressive parameters and let σ2 be the variances of the innovations.
In general, the means, variances and autoregressive parameters will themselves
be functions of a smaller number unknown parameters. The mean parameters,
the variance parameters, and the autoregressive parameters are mutually orthog-
onal, suggesting that a zigzag iteration may be useful for maximum likelihood
estimation.

4 Applications to Regression

4.1 Separable Least Squares

The oldest and most common application of partitioned algorithm ideas is to
regression. If the data vector y is from a normal distribution with mean µ(θ)
and covariance matrix Iσ2, then the scoring iteration for θ specializes to the well
known Gauss-Newton iteration for solving nonlinear least squares problems

θk+1 = θk + (µ̇T µ̇)−1µ̇T (y − µ)

where µ̇ is the gradient matrix of partial derivatives ∂µi/∂θj. Letting (µ̇1 µ̇2) be
the partition of µ̇ into derivatives with respect to θ1 and θ2 respectively, the nested
Gauss-Newton iteration is

θk+1
2 = θk2 +

[
µ̇T2 (I − P1)µ̇2

]−1
µ̇T2 (y − µ)

where P1 = µ̇1(µ̇
T
1 µ̇1)

−1µ̇T1 is the orthogonal projection onto the column space of
µ̇1 and all terms are evaluated at θ1 = θ̂1(θ2). For simplicity, µ̇ is assumed to
be of full rank in the parameter region of interest; otherwise generalized inverses
replace inverses. The nested iteration is most useful when θ1 can be chosen to be
conditionally linear, i.e., µ = X(θ2)θ1 where X is a known matrix function of θ2,
so that µ̇1 = X and θ̂1(θ2) = (XTX)−1XTy is available in closed form.

The use of the closed form expression for θ̂1(θ2) to concentrate the least squares
estimation problem on θ2 is known as separable regression in the numerical litera-
ture. Although the idea of eliminating the linear parameters seems to go back to
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the earliest treatments on nonlinear models in regression (Hartley, 1948; Stevens,
1951; Pimentel-Gomes, 1953), the earliest explicit substitution of θ̂1(θ2) into the
sum of squares seems to be Richards (1961). The first example of the above nested
Gauss-Newton iteration is Walling (1968). Barham and Drane (1972) applied it to
a variety of examples and Kaufman (1975) gave detailed calculations. A closely
related algorithm is given by Golub and Pereyra (1973, 1976), who also give a
detailed treatment of the case when X(θ2) is not of full rank. Ruhe and Wedin
(1980) were the first to consider nested Gauss-Newton for µ not necessarily linear
in θ1.

Although an old idea, separable regression seems to be less used in practice
than it might be. Its use seems to have been delayed by the computation burden
in differentiating S(θ̂1(θ2), θ2) with respect to θ2. See Golub and Pereyra (1973,
1976) and Harville (1973). The nested Gauss-Newton iteration has the attraction
that it avoids the need for this derivative. Ruhe and Wedin (1980) show that
nested Gauss-Newton has the same computation count per iteration as does the
unseparated algorithm, and that it is the simplest scheme for which convergence
is almost quadratic when σ2 is small.

Example 4.1. Many nonlinear functions that are fitted to data by least squares
arise as solutions to homogeneous differential equations. Typically the systematic
component of the process, µ(t) say, satisfies

q∑
k=0

ck(t; β)
∂kµ(t)

∂tk
= 0

in which the ck are coefficients and β is a vector of unknown parameters. If gj(t; β),
j = 1, . . . , q are distinct special solutions for µ, then the general solution is of the
form

µ(t;α, β) =
q∑
j=1

αjgj(t; β)

The empirical values yi observed for the process at times ti are assumed to be
independent with means µi = µ(ti;α, β), producing a separable regression problem
in which the αj are the linear parameters.

Example 4.2. In the previous example, if the ck are constant, i.e., do not depend
on t, and the polynomial with coefficients ck has distinct real roots, then the
differential equation has general solution

µ(t;α, β) =
q∑
j=1

αj exp(βjt)

where the αj are arbitrary and the βj are the roots of the polynomial. Many of the
early nonlinear regression problems in the literature were of this form. Osborne
and Smyth (1991) show how to express this model as a separable regression with
the ck themselves as the nonlinear parameters, and this is important when, as is
usually the case, complex or repeated roots for the polynomial cannot be ruled
out.
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Example 4.3. Stevens (1951) considered nonlinear regression with µi = α + βρxi ,
and proposed a separable regression iteration which is an leapfrog rather than a
nested iteration. He showed that the Gauss-Newton iteration produces updated
estimates αk+1 and βk+1 which depend on ρk but not on αk or βk, and hence
recommended a modified iteration which does not require starting values for α or
β. In our terminology, Steven’s iteration is the leapfrog Gauss-Newton iteration
with θ1 = (α, β)T and θ2 = ρ. The update function F1 for θ1 depends only on
θ2, so the leapfrog iteration θk+1

2 = F2(F1(θ
k
2), θk2) effectively eliminates the linear

parameters. This result generalizes to any separable regression in which each
component of θ2 appears in at most one column of X(θ2), for example

µ = α1g1(x; β1) + . . .+ αpgp(x; βp)

where the αj and βj are scalar parameters, and to some other cases. See also
Ross (1990, Section 5.4). It can be shown that the complete characterization of
regression models for which F1(θ1, θ2) does not depend on θ1 is very similar to
Khuri’s (1984) condition that the optimal subset design for θ1 not depend on θ1.

4.2 Generalized linear models

The ideas of separable regression extend to generalized linear models. Suppose
that each yi is an observation from some generalized linear model distribution
with mean µi, i = 1, . . . , n (McCullagh and Nelder, 1989; Jorgensen, 1987). Then
var(yi) = φv(µi), where v(·) is a known function which characterizes the distribu-
tion and φ is a proportionality constant. The µi are assumed to depend on known
covariates xij and unknown regression parameters βj. The score vector is

˙̀ = µ̇TV −1(y − µ)

where as usual µ̇ is the gradient matrix of derivatives ∂µi/∂βj and V = diag[v(µi)].
The expected information is

I = µ̇TV −1µ̇

Now let θ1, θ2 be a partition of β, and let µ̇1 and µ̇2 be the corresponding
partition of µ̇. We have

˙̀
2 = µ̇T2 V

−1(y − µ)

and

I2.1 = µ̇T2 V
−1µ̇2 − µ̇T2 V −1µ̇1

(
µ̇T1 V

−1µ̇1

)−1
µ̇T1 V

−1µ̇2 = µ̇T2.1V
−1µ̇2.1

where
µ̇2.1 = µ̇2 − µ̇1

(
µ̇T1 V

−1µ̇1

)−1
µ̇T1 V

−1µ̇2

The nested scoring iteration for θ2 may be written

θk+1
2 =

(
µ̇T2.1V

−1µ̇2.1

)−1
µ̇T2.1V

−1(y − µ+ µ̇2.1θ
k
2)

where the right hand side is evaluated at θ1 = θ̂1(θ
k
2). Here µ̇2.1 is the residual

vector from regression of µ̇2 on µ̇1 with weight matrix V −1. The nested iteration
may be performed by two weighted linear regressions, one of µ̇2 on µ̇1 and the
other of z = y − µ+ µ̇2.1θ2 on µ̇2.1.
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Example 4.4. Now suppose that µi = h(ηi; γ), where ηi =
∑p
j=1 xijβj, or equiva-

lently g(µi; γ) = ηi where g(·; γ) is the inverse of h(·; γ). Here g is a parametric
link function as studied by Pregibon (1980), Scallan (1982) and many others. In
this case

µ̇1 = diag(
∂h

∂η
)X, µ̇2 =

∂h

∂γ

The nested iteration may be programmed in for example GLIM, and is closely
related to but simpler than the algorithm given by Scallan, Gilchrist and Green
(1984).

5 Local Convergence

5.1 Contraction factors

In this section we look at the limiting rate of convergence as an iteration ap-
proaches a stationary value. For Newton-type algorithms this turns out to depend
on the accuracy with which the observed information is approximated. For the
EM algorithm it is determined by the proportion of incomplete to complete data.

Consider a general iterative process defined by

θk+1 = F (θk)

with a stationary point at the desired estimate θ̂. A first order Taylor series gives

θk+1 − θ̂ = F (θk)− θ̂
= F (θ̂) + Ḟ (θ̃)(θk − θ̂)− θ̂
= Ḟ (θ̃)(θk − θ̂)
≈ Ḟ (θ̂)(θk − θ̂)

where θ̃ is a point on the line between θk and θ̂ and Ḟ is the p × p iteration
derivative with components ∂Fi/∂θj. So the iteration behaves locally as a multi-

variate geometric series, and will converge to θ̂ from some neighbourhood if the
matrix G = Ḟ (θ̂) defines a contraction mapping. In fact, sufficiently close to the
stationary value, the largest absolute eigenvalue R of G will dominate, and it is
a sufficient condition for the iteration to have a point of attraction at θ̂ that R
be less than one. Except for indeterminacy at R = 1, this condition is necessary
as well as sufficient (Ostrowski, 1960, Section 4.2; Ortega and Rheinboldt, 1970,
Section 10.1). If the algorithm converges, R is the limiting contraction factor
limk→∞ ‖θk+1 − θ̂‖/‖θk − θ̂‖.

5.2 A Nested EM Algorithm

Many statistical estimation problems can be viewed as incomplete data problems
so that application can be made of the EM algorithm of Dempster et al (1977).
The EM algorithm is not a partitioned algorithm in that it does not reduce the
dimension of the parameter space. Instead it imbeds the original problem in a
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complete data problem which, although still of the same dimension, is simpler in
form. Dempster et al (1977) showed that iteration derivative of the EM algorithm
is determined by the ratio of the incomplete to complete information matrices,
i.e., the iteration derivative is G = Iu(θ̂)I−1c (θ̂) where Ic is the Fisher informa-
tion for the complete data and Iu is the Fisher information for the unobserved
component. Convergence of the EM algorithm can therefore be accelerated by
separating out from the iteration those parameters about which there is relatively
least information in the incomplete data.

Let the EM iteration for a parameter vector θ = (θ1, θ2) be defined by

θk+1
1 = F1(θ

k
1 , θ

k
2)

θk+1
2 = F2(θ

k+1
1 , θk2)

We define a nested EM algorithm, with θ1 nested within θ2, to be the iteration

θk+1
2 = F2(θ̃1(θ

k
2), θk2)

where θ̃1(θ2) is the solution with respect to θ1 of θ1 = F1(θ1, θ2), assumed to be
unique. The contract factor of the nested algorithm is Iu2(θ̂)I−1c2 (θ̂) where Iu2
and Ic2 are the information matrices for the non-nested parameters. Further im-
provement can often be obtained by applying Aitken acceleration, which converts
linear into quadratic convergence, to the nested algorithm.

Example 5.1. Let y = (y1, y2, y3)
T be trivariate normal with mean µ and covariance

Σ. Suppose that the experimental design is such that (y1, y2) is observed n1 times,
(y1, y3) is observed n2 times, but y2 and y3 are never observed together. Then the
data contains zero information about σ23, the covariance of y2 and y3. All values
of σ23 for which Σ is positive definite yield the same value of the likelihood.
If the complete data are taken to consist of n1 + n2 trivariate observations, then
Iu(θ̂)I−1c (θ̂) has an eigenvalue equal to one corresponding to σ23. The convergence
of the EM algorithm is, ultimately, infinitely slow.

For this problem the stationary value σ̃23 is that value of σ23 which makes
the corresponding component of Σ−1 zero. Equivalently, σ̃23 is the midpoint of
the interval of values for σ23 which make Σ positive definite. An algorithm for
determining such values for covariance matrices of arbitrary dimension is given by
Wermuth and Scheidt (1977). The nested EM algorithm with σ23 set to σ̃23 at each
iteration converges linearly with contraction factor R = max(n1, n2)/(n1 + n2).

5.3 Scoring

The convergence of scoring and other Newton-type algorithms depends on two
approximations: the quadratic approximation to the log-likelihood function, and
the approximation of observed with expected information. In this section we look
at the information approximation and find that it affects the convergence rate
near the solution. In Section 6 we look at the quadratic approximation and find
that it affects convergence from any starting value.

The iteration derivative for a Newton-type iteration can be found to be

G = A−1(῭+ A) (3)

13



This is the relative difference between −῭ and A at θ̂, and is a measure of the
accuracy with which the observed information is approximated. In the case of
least squares this specializes to

G = (µ̇T µ̇)−1µ̈T (y − µ)

for the Gauss-Newton iteration with identity weight matrix. Here µ̈T (y − µ) is
the p × p matrix with j, kth element

∑n
i=1(∂µ̈i/∂θj∂θk)(yi − µi). Convergence of

the Gauss-Newton algorithm depends therefore on the size of the residual vector
in the direction of µ̈. See also Varah (1991) on this point.

Note that, although G is not in general symmetric, it will have all real eigen-
values if A is symmetric. In that case convergence will be ultimately monotonic
if R is achieved by a positive eigenvalue of G and will be ultimately oscillatory is
R is achieved by a negative eigenvalue.

Several properties of the scoring iteration derivative are encapsulated in three
small theorems below. The first is an expression of the well known property that
the scoring iteration tends to converge rapidly when the number of observations
is large relative to the number of parameters. This theorem is given without
proof, but is an application of the law of large numbers and assumes standard
regularity conditions. A rigorous proof of strong convergence to zero in the case
of least squares is given by Jennrich (1969). The second is that the spectrum
of the scoring iteration derivative depends on the shape of the statistical model,
not on the particular parametrization. This is a surprising result given empirical
evidence (Ratkowsky, 1983; Ross, 1990) that reparametrization can make scoring
less sensitive to starting values. The theorem implies that such benefits are a
result of improving the quadratic approximation to the log-likelihood function as
discussed in Section 6 rather than of improving the approximation of observed
by expected information. The third theorem shows that if the scoring iteration
diverges from close to a maximum, it is likely to do so in an oscillatory manner.
This and subsequent proofs make use of Rayleigh quotients which are described
by Golub and van Loan (1983, page 308).

Theorem 1 If Fisher information is proportional to the sample size n so that
limn→∞ n

−1I is positive definite at the true parameter value, then the components
of the iteration derivative for scoring are O(n−1/2).

Theorem 2 The ultimate rate of convergence of the scoring algorithm cannot be
improved by reparametrization.

Proof. Let J be the Jacobian of the reparametrization. The new Fisher
information and observed information matrices can be expressed in terms of the
old as JTIJ and J(θ̂)T ῭(θ̂)J(θ̂) respectively. Hence the new iteration derivative
can be related to the old through the similarity transformation

J−1I−1(῭+ I)J

which leaves its spectrum unchanged. 2
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Theorem 3 The spectrum of the iteration derivative for scoring is bounded above
by one, strictly so if ῭(θ̂) is negative definite.

Proof. The iteration derivative for scoring has Rayleigh quotient

1 +
zT ῭z

zTIz

which is less than one for all z if ῭ is negative definite. 2

5.4 Partitioned Scoring

The iteration derivative for nested scoring is obtained by differentiating F (θ2) =
θ2+I−1 ˙̀

2(θ̂1(θ2), θ2) with respect to θ2, and observing that ∂θ̂1(θ2)/∂θ2 = −῭−1
1

῭
12.

The iteration derivative is

Gn = I−12.1 (῭
2.1 + I2.1) (4)

which is the relative difference between observed and expected information for θ2
adjusted for θ1.

Similarly the iteration derivative for zigzag maximum likelihood emerges from
differentiating θ2 = θ̂2(θ̂1(θ2)) as

Gz = ῭−1
2

῭
21

῭−1
1

῭
12. (5)

This type of expression is familiar from canonical correlation analysis. If −῭ is
viewed as a partitioned covariance matrix, Gz is a measure of the strength of
relationship between the two groups of variables.

The iteration derivative for leapfrog scoring is slightly less straightforward. If
the convergence matrix for the full scoring iteration is written as

G =

(
G11 G12

G21 G22

)
=

( ∂F1

∂θ1
∂F1

∂θ2
∂F2

∂θ1
∂F2

∂θ2

)

then the leapfrog iteration derivative matrix is

Gl =

(
G1 G12

G21G1 G21G12 +G2

)
.

Some conclusions for large n can immediately be drawn. Nested and leapfrog
iteration derivatives simply inherit the convergence rates given in Theorem 1,
while for zigzag iterations orthogonality is everything.

Corollary 1 The elements of the iteration derivatives for nested and leapfrog
scoring are also O(n−1/2). For zigzag iteration derivative is O(1) unless θ1 and θ2
are orthogonal, in which case it is O(n−1).
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Note that if the elements of G are O(n−1/2) then G21G1 and G21G12 are O(n−1).
So for large n, Gl is approximately equal to(

G1 G12

0 G2

)

the eigenvalues of which are those of G1 and G2. For large n therefore, the
contraction factor for leapfrog iterations is simply the maximum of the contraction
factors for scoring for θ1 and θ2 alone, and is therefore less than or equal to that
of the full scoring iteration.

If θ1 and θ2 are orthogonal, and the scoring iterations for θ1 and θ2 separately
are convergent, then Gn, Gz and Gl are special cases of a more general expression.
For each k, let the sequence {θk,j1 : j ≥ 0} be defined by θk,01 = θk1 and θk,j+1

1 =
F1(θ

k,j
1 , θk2), and consider the process

θk+1
1 = θk,m1

θk+1
2 = F2(θ

k+1
1 , θk2)

for different values of m. This corresponds to updating θ1 m times before turning
to θ2. The iteration derivative of this process is(

Gm
1 (I −G1)

−1(I −Gm
1 )G12

G21G
m
1 G21(I −G1)

−1(I −Gm
1 )G12 +G2

)

which reduces to Gl for m = 1 and to Gn for m =∞. Zigzag iterations could be
incorporated also by considering repeated updating of θ2. Choosing m > 1 in the
above iteration is likely to be worthwhile if θk1 is converging more slowly than θk2 .

We now consider how partitioned algorithms may benefit the limiting conver-
gence rate for a given sample. Nesting is found to generally improve the accuracy
with which observed information is approximated. The zigzag iteration is found
to admit a global convergence result. An ideal situation for partitioned algorithms
turns out to be that in which θ1 and θ2 are orthogonal with exponential family
submodels.

Theorem 4 The contraction factor for nested scoring is bounded above by that
for the full scoring iteration.

Proof. We show that the extreme eigenvalues of I−12.1
῭
2.1 are bounded by those

of I−1 ῭. This is sufficient for the result, since adding identity matrices to both
expressions simply increments all the eigenvalues without altering the relative
result.

Let P be the p× p2 matrix (0 I)T . Then I−12.1 = P TI−1P and ῭−1
2.1 = P T ῭−1P ,

so I−12.1
῭
2.1 has Rayleigh quotient

zTP TI−1Pz
zTP T ῭−1Pz

(6)

for z ∈ IRp2 . The extrema of (6) are constrained extrema of

vTI−1v
vT ῭−1v
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or equivalently of
vT ῭v

vTIv
(7)

over v ∈ IRp, and hence are bounded by the unconstrained extrema. Observing
that (7) is the Rayleigh quotient of I−1 ῭ completes the proof. 2

This generalizes some of the results of Ruhe and Wedin (1980) who examined
contraction factors for several separable least squares algorithms including nested
Gauss-Newton and the variable projection algorithm of Golub and Pereyra (1973).
Both algorithms were found to have contraction factors bounded by that of the
unseparated Gauss-Newton iteration. In practice the contraction factors of nested
and full scoring iterations are often very similar, because the nesting is applied to
parameters which are conditionally easy to estimate, as in separable regression. A
greater reduction in the contraction factor could be achieved by applying nesting
to the most nonlinear parameters. This reduction would, however, have to be
balanced against the increase in computation per iteration.

Example 5.2. As a numerical example of nesting, consider the following simulated
data set to which the rational function y = (1+θ1x)/(1+θ2x

2) was fitted by least
squares. The problem has been chosen small to make plotting of the iteration
function possible.

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
y 0.8280 0.5232 0.5510 0.6087 0.3365 0.3150 0.1629 0.2490 −0.0330 0.1965

The least squares estimates are θ̂1 = −0.6900 and θ̂2 = 3.4055. The contraction
factor for Gauss-Newton is −0.49 while that for nested Gauss-Newton with θ1
nested within θ2 is −0.20. Figure 1 plots F (θ2) against θ2 for nested Gauss-
Newton, so that the contraction factor is represented by the slope of the curve at
θ2 = θ̂2. Also given is a plot of F (θ1, θ2) versus θ2 for the Gauss-Newton algorithm,
where θ1 is chosen so that (θ1, θ2)

T lies in the dominant eigenspace of the iteration
derivative, as it would in practice after repeated iteration. The plot shows that
the nested iteration converges from starting values between about −1 and 8, while
the full iteration converges from values between about −1 and 6.

Example 5.3. It can be shown that for regression models of the Stevens type,
discussed in Example 4.3, the contraction factors for nested and complete Gauss-
Newton are identical. This includes for example exponential function fitting as
in Example 4.2. Practical benefits do often come from the nested Gauss-Newton
algorithm for such models, but this is related to the quadratic approximation to
the log-likelihood rather than to the difference between observed and expected
information; see Section 6.

Theorem 5 Zigzag iterations have a point of attraction at any maxima of the
likelihood for which −῭ is positive definite. Furthermore, the convergence is mono-
tonic.
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Figure 1: Plot of θ2 versus F (θ2), where F is an iteration function, for the data
of Example 5.2. Dashed line is for nested Gauss-Newton, dotted line is for full
Gauss-Newton with θ1 chosen so that (θ1, θ2)

T lies in the dominant eigenspace of
Ḟ .

Proof. If −῭ is positive definite, then the eigenvalues of (5) may be recognized
as the squared canonical correlations calculated from the partitioned covariance
matrix (

−῭
11 −῭

12

−῭
21 −῭

22

)
.

All the eigenvalues, therefore, lie between 0 and 1 (Rao, 1973, Section 8f.1). 2

Zigzag iterations have the advantage that the likelihood is non-decreasing with
each iteration. This allows a global convergence result, given by Ortega and
Rheinboldt (1970, page 516) as the Global SOR Theorem. This has been exploited
by Jensen, Johansen and Lauritzen (1991) to give a globally convergent algorithm
for maximizing exponential family likelihoods.

Example 5.4. Consider the zigzag iteration for β1 and β2 in the multiple linear
regression model E(Yi) = β1x1i + β2x2i. The contraction factor for this iteration
is the squared correlation between x1 and x2.

Example 5.5. As an example of both the reliability of the zigzag iteration and
its slowness for nonorthogonal parameters, consider the application of the method
described in Example 3.2 to data from Kowalik and Osborne (1968, page 104). The
model is E(Yi) = (α1x

2
i+α2xi)/(x

2
i+β1xi+β2), and there are 11 observations. This

problem is difficult for Newton methods in that it requires superb starting values
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for β1 and β2. Instead, cycling between the numerator and denominator models as
described in Example 3.2 produces an algorithm which converges from the usual
generalized linear model starting values, although very slowly. Convergence in
the sum of squares to 5 significant figures required about 300 iterations for the
author’s implementation in GLIM. Parameter values suitable as starting values
for Gauss-Newton were obtained far more quickly.

The final two theorems give circumstances in which leapfrog scoring, which is
the least expensive iteration, is a suitable substitute for nested scoring.

Theorem 6 If θ1 and θ2 are orthogonal, and the scoring iteration for θ1 with θ2
fixed is quadratically convergent, then leapfrog and nested scoring have the same
contraction factor.

Proof. If I12 = 0 and ῭
1 + I1 = 0, then the iteration derivative for leapfrog

scoring is (
0 G12

0 G21G12 +G2

)
=

(
0 I−11

῭
12

0 I−12
῭
21I−11

῭
12 + I−12 (῭

2 + I2)

)

the eigenvalues of which are those of

I−12
῭
21I−11

῭
12 + I−12 (῭

2 + I2) = I−12 (῭
2.1 + I2).

2

Example 5.6. Let y1, . . . , yn be independent, and let yi have a gamma distribution
with mean µi and variance φiµ

2
i , where

1

µi
= xTi β

and
log φi = zTi γ

where the xi and zi are known vectors of covariates. Then β and γ are orthogonal,
and the scoring iteration for β alone is quadratically convergent since the reciprocal
link function is canonical for the gamma family. So leapfrog scoring for β and γ
has the same contraction factor as nested scoring for γ.

The final theorem shows that, under ideal circumstances, one iteration of any
of the partitioned algorithms is equivalent to two iterations of the full scoring
algorithm.

Theorem 7 If θ1 and θ2 are orthogonal, and the scoring iterations for θ1 and θ2
separately are quadratically convergent, then leapfrog, nested and zigzag scoring
all have the same contraction factor, which is the square of that of the full scoring
iteration.
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Proof. The iteration derivative of the full scoring iteration is

G =

(
0 I−11

˙̀
12

I−12
῭
21 0

)
,

the eigenvalues of which are the same as of those of

G =

(
0 I−1/21

῭
12I−T/22

I−1/22
῭
21I−T/21 0

)

which are the singular values of I−1/21
῭
12I−T/22 . The iteration derivative for leapfrog

scoring is (
0 I−11

῭
12

0 I−12
῭
21I−11

῭
12

)

the eigenvalues of which are those of I−12
῭
21I−11

῭
12 or of I−1/22

῭
21I−11

῭
12I−T/22 , that

is the squares of the singular values of I−1/21
῭
12I−T/22 . The corresponding results

for leapfrog and nested scoring follow directly by substituting I12 = 0, I1 = −῭
1

and I2 = −῭
2 into (5) and (4). 2

Example 5.7. Let yi be inverse-Gaussian, with mean µi and variance φiµ
3
i , where

1

µ2
i

= xTi β

and
1

φi
= zTγ.

In this case, β and γ are orthogonal, and the scoring iterations for θ1 or θ2 sep-
arately are quadratically convergent. One iteration of nested, zigzag or leapfrog
scoring for β and γ is equivalent in this case to two iterations of the full scoring
algorithm.

6 The Quadratic Approximation to the Log-likelihood

Unlike the EM algorithm, Newton-type algorithms often take very many itera-
tions to asymptote to their limiting contraction factors, and to understand their
behaviour on practical problems it is necessary to study convergence more glob-
ally. An ideal iteration function F , which converges to θ̂ in one step from any
starting value, has a derivative Ḟ which is identically zero. The Newton-Raphson
iteration, being quadratically convergent, has Ḟ = 0 at θ = θ̂, but for the iteration
to converge reliably in practice it is necessary that Ḟ remain small as far from θ̂ as
possible. More precisely, F (θ) will be closer to θ̂ than θ if the average derivative
Ḟ between θ and θ̂ has spectral radius less than one.

The iteration derivative for Newton-Raphson at an arbitrary point involves the
third derivative of the log-likelihood, which will be expressed as a trilinear form,
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...
` [·, ·, ·], in notation similar to Dieudonné (1960). If u, v and w are vectors then...
` [u, v, w] is the scalar

∑
ijk

...
`ijk uivjwk, where the

...
`ijk are the individual partial

derivatives, and, for example,
...
` [u, ·, ·] is a bilinear form which can be identified

with a matrix. The iteration derivative for Newton-Raphson is

Ḟ = ῭−1 ∂
῭

∂θ
῭−1 ˙̀ =

...
` [῭−1, ῭−1 ˙̀, ·]

i.e., the matrix whose (a, b) element is
∑
ijk

῭ai ...`ijb ῭jk ˙̀
k, where ῭ai,

...
`ijb and ˙̀

k

are components of ῭−1,
...
` and ˙̀ respectively. The largest eigenvalue of this matrix

is a measure of how effective the quadratic approximation to the log-likelihood
is at this point. The matrix is always zero at θ = θ̂, reflecting the fact that the
quadratic approximation is always satisfactory sufficiently close to θ̂.

Now consider a reparametrization to φ defined by θ = Hφ, where H is a
non-singular constant matrix. We show that the eigenvalues of the iteration
derivative are invariant with respect to such a linear reparametrization. The
Newton-Raphson iteration in terms of φ, Fφ(φ) = φ− ῭−1

φ
˙̀
φ has derivative

Ḟφ =
...
`φ [῭−1φ , ῭−1

φ
˙̀
φ, ·]

where ˙̀
φ, ῭

φ and
...
`φ are the derivatives of the log-likelihood with respect to φ.

Now ˙̀
φ = HT ˙̀, ῭

φ = HT ῭H and
...
`φ [·, ·, ·] =

...
` [H,H,H], so

Ḟφ =
...
`φ [H−1 ῭−1H−T , H−1 ῭−1H−THT ˙̀, ·] =

...
`φ [H−1 ῭−1H−T , H−1 ῭−1 ˙̀, ·]

=
...
` [῭−1H−T , ῭−1 ˙̀, H]

which is a bilinear form corresponding to the matrix H−1ḞH. The iteration
derivatives for the original and transformed parameters are related through a
similarity relation.

We are now in a position to prove Theorem 8, which shows that nesting im-
proves globally the rate of convergence of the Newton-Raphson algorithm, at least
close to the locus θ1 = θ̂1(θ2). Nesting improves the quadratic approximation to
the log-likelihood by reducing the number of dimensions over which inaccuracies
may manifest themselves.

Theorem 8 The eigenvalues of the iteration derivative for nested Newton-Raphson
are bounded by those of the iteration derivative for the full Newton-Raphson iter-
ation at θ1 = θ̂1(θ2).

Proof. The nested Newton-Raphson iteration is

Fn(θ2) = θ2 − ῭−1
2.1(θ̂1(θ2), θ2)

˙̀
2(θ̂1(θ2), θ2)

which has the derivative with respect to θ2

Ḟn = ῭−1
2.1

∂ ῭
2.1

∂θ2
῭−1
2.1

˙̀
2
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Now
∂ ῭

2.1

∂θ2
=
∂ ῭

22

∂θ2
− ∂ ῭

21

∂θ2
῭−1 ῭

12 + ῭
21

῭−1
11

∂ ῭
11

∂θ2
῭−1
11

῭
12 − ῭

21
῭−1
11

∂ ῭
12

∂θ2

Writing K = ∂θ̂1(θ2)/∂θ2 = −῭
21

῭−1
11 , and remembering that the matrices are

evaluated at (θ̂1(θ2), θ2), this is

∂ ῭
2.1

∂θ2
=
...
`222 [·, ·, ·]+

...
`221 [·, ·, K]+

...
`212 [·, K, ·]+

...
`211 [·, K,K]

+
...
`112 [K,K, ·]+

...
`111 [K,K,K]+

...
`122 [K, ·, ·]+

...
`121 [K, ·, K]

which is
...
` [J, J, J ] with J = (−῭

21
῭−1
11 I)T . Therefore

Ḟn =
...
` [J ῭−1

2.1, J
῭−1
2.1

˙̀
2, J ]

Recall that ˙̀
1(θ̂1(θ2), θ2) = 0, so, using the factorization for ῭ given in Section 2,

῭−1 ˙̀(θ̂1(θ2), θ2) =

(
I −῭−1

11
῭
12

0 I

)(
῭−1
11 0

0 ῭−1
2.1

)(
I 0

−῭
21

῭−1
11 I

)(
0
˙̀
2

)

=

(
I −῭−1

11
῭
12

0 I

)(
0

῭−1
2.1

˙̀
2

)
= J ῭−1

2.1
˙̀
2

Also write H2 = J ῭−1/2
2.1 and

H =
(
H1 H2

)
=

(
I −῭−1

11
῭
12

0 I

)(
῭−1/2
11 0

0 ῭−1/2
2.1

)

so that H = ῭−T/2 and H2 holds the last dim(θ2) columns. Now we can write

Ḟn = ῭−1/2
2.1

...
` [H2, ῭−1 ˙̀, H2]῭

1/2
2.1

which is similar to the symmetric matrix

...
` [H2, ῭−1 ˙̀, H2]

which is the trailing diagonal submatrix of

...
` [H, ῭−1 ˙̀, H]

which is itself symmetric. Finally, noting that H = ῭−1H−T , this last matrix is

...
` [῭−1H−T , ῭−1 ˙̀, H]

which is similar to Ḟ . 2

A similar result shows that the Newton-Raphson iteration for any submodel
(i.e., with a subset of the parameters held fixed) has spectral radius less than or
equal to that of the full iteration. This result is relevant for the inner iterations
for zigzag iterations.
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Figure 2: Plot of β versus F (F (β)), where F is an iteration function, for the data
of Example 6.1. Dashed line is for nested Newton-Raphson, dotted line is for full
Newton-Raphson with α initially at α̂(β).

Example 6.1. Lawton and Sylvestre (1971) give a small data set to which they
fit the growth model E(Y ) = α exp(βx) by least squares. Figure 2 plots β versus
the two-step update Fn(Fn(β)), where Fn is the nested Newton-Raphson iteration
function. Nested Newton-Raphson converges rapidly to the least squares estimate
of about 0.5 for all values in the plot, from 0.1 to 0.7. Also plotted in the two-
step update for β using the full Newton-Raphson iteration, where α is set equal
to α̂(β) initially. Note that, because of this choice for α, both nested and full
iterations would give the same update for β after one step. The figure shows
that the Newton-Raphson iteration oscillates wildly for β near 0.4 and 0.6, and
converges to an incorrect stationary value for β near 0.3.

Theorem 8 can be extended to show that the iteration derivative for nested
scoring is bounded in spectrum by that of full scoring. Intuitively, the two neces-
sary pieces of the result have already been established in that Theorem 8 shows
that nesting improves the quadratic approximation to the log-likelihood while
Theorem 4 shows that nesting also improves the accuracy with which expected in-
formation approximates observed information. The iteration derivative for Fisher
scoring may be written

Ḟ = I−1(῭+ I)− İ[I−1, I−1 ˙̀, ·]

where İ is the trilinear form obtained by differentiating the Fisher information
matrix. In this expression the first term is a measure of the difference between
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Full Gauss-Newton

Iteration β1 β2 ρ(Ḟ ) ‖F (θ)−θ̂‖
‖θ−θ̂‖

0 2.600000 5.200000
1 1.831228 13.043768 1.624803 3.001813
2 0.572247 14.354976 2.134172 1.072768
3 4.112035 12.767053 1.820660 0.975636
4 4.593813 6.841691 2.066168 0.163049
5 3.219695 8.166753 0.341903 1.194553
6 3.828292 7.506807 0.154307 0.466922
7 4.092792 7.100365 0.014724 0.175763
8 4.118335 7.078389 0.027882 0.010473
9 4.117614 7.079257 0.028973 0.016849
10 4.117611 7.079264 0.028973 0.575726

Nested Gauss-Newton

Iteration β1 β2 ρ(Ḟ ) ‖F (θ)−θ̂‖
‖θ−θ̂‖

0 2.600000 5.200000
1 1.831228 13.043768 2.644429
2 3.198500 6.633438 0.159922
3 3.769804 7.963231 0.929900
4 4.037648 7.167256 0.125157
5 4.115179 7.082125 0.031516
6 4.117600 7.079288 0.004778

Table 1: Successive iterates obtained using the full and nested Gauss-Newton
algorithms to solve the least squares problem of Example 6.2. The table also
gives the spectral radius of the iteration derivative and the observed contraction
factor at each iteration. The conditional least squares estimates α̂(β) were used
as starting values for α0, α1 and α2. The iterates for the αi are omitted from the
table.

expected and observed information and the second is analogous to the iteration
derivative for Newton-Raphson.

Although nesting improves the quadratic approximation, the reduced log-
likelihood can still be far from quadratic for certain parameter values, as Ross (1990;
page 124) points out in the case of the separable regression. In separable regres-
sion the reduced sum of squares is bounded above by

∑
y2i whereas a quadratic

function would be unbounded. Ross argues that the quadratic approximation
can be further improved by replacing the reduced sum of squares r(θ2) with
r(θ2)/{

∑
y2i − r(θ2)}.

Example 6.2. The model E(Yi) = α0 +α1 exp(−β1xi) +α2 exp(−β2xi) is fitted by
least squares to a data set of 33 observations from Osborne (1972). Least squares
estimates are (α̂T , β̂T ) = (0.37541, 1.9358,−1.4647, 4.1176, 7.0793) with the xi
normalized so that x33 = 1. The fit is excellent, the residual root mean square
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being 0.0013970, which is only slightly more than the accuracy with which the
responses were recorded. Table 1 gives successive iterates for β1 and β2 for both full
and nested Gauss-Newton algorithms starting from the values (β1, β2) = (2.6, 5.2).
For the full Gauss-Newton algorithm, the conditional least squares estimates α̂(β)
were used for the αi. On this problem, both full and nested Gauss-Newton have
the same limiting contraction factor, namely R = 0.0290, since the model is of
the Stevens type discussed in Examples 4.3 and 5.2. Differences between the
algorithms can therefore be interpreted as mainly due to differences in the quality
of the quadratic approximation to the log-likelihood.

The nested algorithm has a radius of convergence 40 or 50% greater than that
of the full algorithm. For example, the full algorithm converges if started from
α = α̂(β), β2 = β̂2 and β1 in the interval (1.4, 4.8), and for other values of β1 it
diverges. For the nested algorithm, the interval in which β1 must lie is (1.0, 5.9).
Similarly, the full algorithm converges if started from α = α̂(β), β1 = β̂1 and β2
in the interval (6.1, 20.5). For the nested Gauss-Newton algorithm, the interval in
which β2 must lie is (4.9, 25.5).

Counting the number of iterations to convergence in cases where convergence
in achieved gives an inflated impression of the performance of the Gauss-Newton
algorithm, since, like Newton-Raphson, it tends to converge rapidly or not at all.
By including a line search or trust region modification to ensure convergence,
the algorithm may be started from more difficult initial values and the number of
iterations to convergence can become far greater. On this problem for example, the
full Gauss-Newton algorithm with a Levenberg-Marquardt modification requires
526 iterations to convergence from the starting value β = (5.1, 5.2)T , α = α̂(β),
while nested Gauss-Newton with the same modification requires only 11 iterations.
Both unmodified algorithms diverge from this starting value.

7 Discussion

Nested scoring is in several ways the natural counterpart to full scoring in the
presence of nuisance parameters. For example, it is well known that the score
test statistic of a simple hypothesis, H0 : θ = θ0, is equal to the Wald test
statistic using the estimator obtained after one scoring iteration starting from θ0.
Nested iterations play the same role for composite hypotheses. The score test
statistic of the composite hypothesis H0 : θ2 = θ20 is I−1/22.1

˙̀
2(θ̂1(θ20), θ20), which

is equal to the Wald test statistic I1/22.1 (θ̃2 − θ20) using the one-step estimator
θ̃2 = θ20 + I−12.1

˙̀
2(θ̂1(θ20), θ20). As another related example, the result that one-

step scoring estimators starting from consistent estimates are fully efficient can
be shown to carry over to show that one-step nested scoring estimators starting
from consistent estimators are consistent in the presence of nuisance parameters.

The relative difference between observed and expected information, used in
Section 5 to construct contraction factors, has eigenvalues which are geometric
invariants. In the least squares context they relate to Bates and Watts’ (1988)
intrinsic curvature. For more general models they relate to statistical curvature
as defined by Efron (1975), Amari (1982, 1985) and others. This relationship
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discussed briefly in Smyth (1987).
The symmetrized version of the iteration derivative Ḟ used in Section 6 to eval-

uate the quadratic approximation to the log-likelihood can be represented as the
symmetric trilinear form

...
` [I−1/2, I−1/2, I−1/2] acting on the standardized score

vector I−1/2 ˙̀. Evaluated at θ̂, the trilinear form is the multiparameter version of
the statistic

...
` (−῭)−3/2 used by Sprott (1973) and by Kass and Slate (1992) as a

diagnostic in large sample estimation theory.
The idea of cycling between fits for submodels as in the zigzag iteration is

very general and can be applied outside the maximum likelihood context. For
example Schall (1991) estimated generalized linear models with random effects
by cycling between and a scoring iteration for the mean parameters and an EM
iteration for the dispersion parameters. Weisberg and Welsh (1991) estimate
generalized linear model with nonparametric link by cycling between scoring for
the mean parameters and kernel estimation for the link. Results similar to those
in this paper will apply when there is an objective function that applies to both
submodels, as in the likelihood context.

Barham and Drane (1972) suggest that nesting the Gauss-Newton iteration is
more important in conjunction with a line search method than with a Levenberg-
Marquardt modification. The author’s experience, as Example 6.2 shows, has
been that nesting can be very important in the latter case also. The question of
whether the benefits of partitioning are diminished or increased when algorithms
are modified for practical use has been necessarily beyond the scope of this paper,
but is an important one which would repay further investigation.
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