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A MODIFIED PRONY ALGORITHM FOR EXPONENTIAL
FUNCTION FITTING

M. R. OSBORNE∗ AND G. K. SMYTH†

Abstract. A modification of the classical technique of Prony for fitting sums of exponential
functions to data is considered. The method maximizes the likelihood for the problem (unlike the
usual implementation of Prony’s method, which is not even consistent for transient signals), proves
to be remarkably effective in practice, and is supported by an asymptotic stability result. Novel
features include a discussion of the problem parametrization and its implications for consistency.
The asymptotic convergence proofs are made possible by an expression for the algorithm in terms of
circulant divided difference operators.
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1. Introduction. Prony’s method is a technique for extracting sinusoid or ex-
ponential signals from time series data, by solving a set of linear equations for the
coefficients of the recurrence equation that the signals satisfy [24] [22] [17]. It is closely
related to Pisarenko’s method, which finds the smallest eigenvalue of an estimated co-
variance matrix [32]. Unfortunately, Prony’s method is well known to perform poorly
when the signal is imbedded in noise; Kahn et al [14] show that it is actually incon-
sistent. The Pisarenko form of the method is consistent but inefficient for estimating
sinusoid signals and inconsistent for estimating damped sinusoids or exponential sig-
nals.

A modified Prony algorithm that is equivalent to maximum likelihood estimation
for Gaussian noise was originated by Osborne [28]. It was generalized in [39] [30]
to estimate any function which satisfies a difference equation with coefficients linear
and homogeneous in the parameters. Osborne and Smyth [30] considered in detail
the special case of rational function fitting, and proved that the algorithm is asymp-
totically stable in that case. This paper considers the application to fitting sums of
exponential functions.

The modified Prony algorithm for exponential fitting will estimate, for fixed p,
any function µ that solves a constant coefficient differential equation

p+1∑
k=1

ξkDk−1µ = 0(1)

where D is the differential operator. Perturbed observations, yi = µ(ti)+εi, are made
at equi-spaced times ti, i = 1, . . . , n, where the εi are independent with mean zero
and variance σ2. The solutions to (1) include complex exponentials, damped and
undamped sinusoids and real exponentials, depending on the roots of the polynomial
with the ξk as coefficients. The modified Prony algorithm has the great practical
advantage that it will estimate any of these functions according to which best fits the
available observations.
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Although the algorithm estimates all functions in the same way, the practical
considerations and asymptotic arguments differ depending on whether the signals are
periodic or transient, real or complex. This paper therefore focuses on the specific
problem of fitting a sum of real exponential functions

µ(t) =

p∑
j=1

αje
−βjt(2)

to real data. The αj and βj will be assumed real, the βj distinct and generally
non-negative. This paper is mainly concerned with proving the asymptotic stability
of the algorithm, but several practical issues are also addressed. The algorithm has
been applied elsewhere to real sinusoidal signals [21] [14] and to exponentials with
imaginary exponents in complex noise [18].

Real exponential fitting is one of the most important, difficult and frequently
occuring problems of applied data analysis. Applications include radioactive decay
[38], compartment models [2, Chapter 5] [37, Chapter 8], and atmospheric transfer
functions [46]. Estimation of the αj and βj is well known to be numerically difficult
[19, p. 276] [43] [37, Section 3.4]. General purpose algorithms often have great dif-
ficulty in converging to a minimum of the sums of squares. This can be caused by
difficulty in choosing initial values, ill-conditioning when two or more βj are close, and
other less important difficulties associated with the fact that the ordering of the βj is
arbitrary. The modified Prony algorithm solves the problem of ordering the βj and
is relatively insensitive to starting values. It also solves the ill-conditioning problem
as far as convergence of the algorithm is concerned, but may return a pair of damped
sinusoids in place of two exponentials which are coalescing.

In some applications the restriction to positive coefficients αj is natural. A convex
cone characterization is then possible, and special algorithms have been proposed in
[6] [46] [15] [10] [35]. We prefer to treat the general problem with freely varying coeffi-
cients since this is appropriate for most compartment models. A common attempt to
reduce the difficulty of the general problem has been to treat it as a separable regres-
sion, i.e., to estimate the coefficients by linear least squares conditional on the rate
constants βj as in [44] [20] [1] [12] [16] [40]. Another approach has been suggested by
Ross [34, Section 3.1.4] who suggests that the coefficients of the differential equation
(1) comprise a more “stable” parametrization of the problem than do the parameters
of (2). Both of these strategies are part of the modified Prony algorithm.

The modified Prony algorithm uses the fact that the µ(ti) satisfy an exact dif-
ference equation when the ti are equally spaced. The algorithm directly estimates
the coefficients, γk say, of this difference equation. In Section 3 it is shown that the
residual sum of squares after estimating the αj can be written in terms of the γk.
The derivative with respect to γ = (γ1, . . . , γp+1)T can then be written as 2B(γ)γ,
where B is a symmetric matrix function of γ. The modified Prony algorithm finds
the eigenvector of B(γ)γ = λγ corresponding to λ = 0 by the fixed point iteration in
which γk+1 is the eigenvector of B(γk) with eigenvalue nearest zero. The eigenvalue
λ is the Lagrange multiplier for the scale of γ in the homogeneous difference equation.
Inverse iteration proves very suitable for the actual computations.

Jennrich [13] shows that, under general conditions, least squares estimators are
asymptotically normal and unbiased with covariance matrix of O(n−1). Under the
same conditions the Gauss-Newton algorithm is asymptotically stable at the least
squares estimates. For the results to apply here, it is necessary that the empirical
distribution function of the ti should have a limit as n→∞. Since the ti are equally
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spaced, it is sufficient that they lie in an interval independent of n. Without loss
of generality we take this interval to be the unit interval and assume that ti = i/n,
i = 1, . . . , n.

Difference equation parametrizations for the exponential functions are discussed
in the next section. The modified Prony algorithm is given in Section 3. It is com-
pared with Prony’s method and another algorithm of Prony type, and the equivalence
of the various parametrizations is discussed. The algorithm is shown to be asymp-
totically stable, and σ2B(γ̂)+ is shown to estimate the asymptotic covariance matrix
of the least squares estimator γ̂ in Section 4. Section 5 shows how the algorithm can
accommodate linear constraints on the γj . Such constraints may serve for example to
include a constant term in µ(t) or to constrain it to be a sum of undamped sinusoids.
A small simulation study is included in Section 6 to illustrate the asymptotic results
and to compare the modified Prony algorithm with the Levenberg algorithm.

The asymptotic convergence proofs involve lengthy technical arguments and are
relegated to the appendix. The proofs are made possible by an expression for the
algorithm in terms of circulant divided difference operators. Circulant methods have
often been applied to differential and difference equations, for example in [45] [26]
[11] [7]. The theory of circulant matrices was put on a firm basis with the work of
Davis [8]. The methods are used here somewhat differently, to compute certain matrix
multiplications analytically.

2. Difference and Recurrence Equations. Suppose that µ(t) satisfies the
constant coefficient differential equation (1), and that the polynomial

pξ(z) =

p+1∑
k=1

ξkz
k−1(3)

has distinct roots −βj with multiplicities mj for j = 1, . . . , s. Then (1) may be
rewritten as

s∏
j=1

(D + βjI)mjµ(t) = 0.

The general solution for µ may be expressed as

µ(t) =

s∑
j=1

mj∑
k=1

αjkt
k−1e−βjt

writing αjk for the coefficients of the fundamental solutions. The roots βj may in
general include complex pairs. If so, then the real part of µ will contain linear combi-
nations of damped trigonometric functions e−Reβjt sin(Imβjt) and e−Reβjt cos(Imβjt).

Now consider discrete approximations to the differential equation. Let Π be
the forward shift operator defined by Πµ(t) = µ(t + 1

n ), and let ∆ be the divided
difference operator ∆ = n(Π − I). It is easy to verify that the operator (∆ + ζjI)m

with ζj = n(1−e−βj/n) annihilates the term tm−1e−βjt. Therefore µ also satisfies the
difference equation

s∏
j=1

(∆ + ζjI)mjµ(t) = 0,
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which can be written as

p+1∑
k=1

γk∆k−1µ(t) = 0(4)

for some suitable choice of γk. The γk will be called the difference form Prony param-
eters. The ζj and γk represent discrete approximations to the βj and ξk respectively,
in the sense that ζj → βj and γk → ξk as n→∞.

For some purposes a simpler discrete approximation is that in terms of the forward
shift operators. The function tm−1e−βjt is also annihilated by the operator (Π−ρjI)m

with ρj = e−βj/n. Therefore µ also satisfies the recurrence equation

s∏
j=1

(Π− ρjI)mjµ(t) = 0

which can be written as

p+1∑
k=1

δkΠk−1µ(t) = 0(5)

for some δk. We call the δk the recurrence form Prony parameters. Since ρj →
1 as n → ∞, the δk must converge to some multiple of the binomial coefficients
(−1)p−k+1

(
p
k−1
)
, a limit which is independent of the βj .

The relationship between the difference and recurrence parameters can be exhib-
ited by equating

p+1∑
k=1

γk∆k−1 =

p+1∑
k=1

ckΠk−1,

which when solved for the ck gives

cj =

p+1∑
k=j

(−1)k−j
(
k − 1

j − 1

)
nk−1γk.

That is, c = Uγ where U is the nonsingular matrix

U =



1 −1 1 · · · (−1)p

1 −2
1

. . .
...

1 −
(
p
1

)
1




1

n
. . .

np

(6)

and c = (c1, . . . , cp+1)T . Obviously c and δ are re-scaled versions of one another. The
notational convention will be used that c represents the above function of γ while δ
is a function of the rate constants βj with elements scaled to be O(1).

For the reasons given in the introduction, we will henceforth assume that the
roots of pξ(·) are distinct and real, so that the general solution for µ(t) collapses to
the sum of real exponential functions (2). The coefficients of the differential equation
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ξk can then be expressed as the elementary symmetric functions of the βj . If the ξk
are scaled so that ξp+1 = 1, then the ξk are given by

ξk =

( p
p−k+1)∑
j=1

∏
`∈Jk,j

β`

where Jk,j for j = 1, . . . ,
(

p
p−k+1

)
are the possible sets of size p − k + 1 drawn from

{1, . . . , p}. Write this as ξ = S(β), after gathering the ξk and the βj into respective
vectors. Similarly, in an obvious notation, γ = S(ζ), if γ is scaled so that γp+1 = 1,
and δ = S(−ρ), if δ is scaled so that δp+1 = 1.

3. A Modified Prony Algorithm.

3.1. Nonlinear Eigenproblem. Let µi = µ(ti), i = 1, . . . , n, let µ = (µ1, . . . , µn)T

and let Xδ be the n× (n− p) matrix

Xδ =



δ1
...

. . .

δ1
δp+1

. . .
...

δp+1


where the δk are the recurrence parameters. Then µ satisfies

XT
δ µ = 0

which is the matrix version of the recurrence equation (5). Alternatively, we can
substitute ck for δk in Xδ and write the resulting matrix Xγ as a function of the
difference parameters γ using c = Uγ. Then

XT
γ µ = 0

is the matrix version of the difference equation (4).
We now treat the exponential fitting problem as a separable regression, and use

the above matrix equations to give an expression for the reduced sum of squares. Let
A be the n× p matrix function of β with elements Aij = e−βjti , and write

µ = A(β)α

where α = (α1, . . . , αp)
T . Then A is orthogonal to both Xδ and Xγ , and, if the βj

are distinct, all matrices are of full column rank. Let y = (y1, . . . , yn)T be the vector
of observations. The sum of squares

φ(α,β) = (y − µ)T (y − µ)

is minimized with respect to α by

α̂(β) = (ATA)−1ATy.

Substituting α̂(β) into φ gives the reduced sum of squares

ψ(β) = φ(α̂(β),β)

= yT (I − PA)y
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where PA is the orthogonal projection onto the column space of A. The function
ψ is the variable projection functional defined by Golub and Pereyra [12]. We can
reparametrize to the Prony parameters by writing

ψ = yTPXy(7)

where PX is the orthogonal projection onto the common column space of Xδ and Xγ .
Then ψ is a function of either δ or γ.

We now solve the least squares problem with respect to the Prony parameters.
The derivative of ψ with respect to γ can be written

ψ̇γ = 2Bγ(γ)γ

where Bγ is the symmetric (p+ 1)× (p+ 1) matrix function of γ with elements

Bγij = yTXγi(X
T
γ Xγ)−1XT

γjy − yTXγ(XT
γ Xγ)−1XT

γiXγj(X
T
γ Xγ)−1XT

γ y(8)

and where Xγj = ∂Xγ/∂γj . Each Xγj is a constant matrix representing the j − 1th
order divided difference operator [30]. Since the scale of γ is disposable, we will adjoin
the condition γTγ = 1 so that the components of γ are O(1). A necessary condition
for a minimum of (7) subject to the constraint is

(Bγ(γ)− λI)γ = 0(9)

where λ is the Lagrange multiplier for the constraint. This condition corresponds to
a special case of the problem considered by Mittleman and Weber [23] and described
by them as a nonlinear eigenvalue problem. This is not the usual form of nonlinear
eigenvalue problem in which the nonlinearity is in the eigenvalue λ only, and it ap-
pears to have been little studied otherwise. Our special case possesses one feature of
the ordinary eigenvalue problem not enjoyed by the general form considered in [23].
Solutions to (9) are independent of change of scale, and as a further consequence the
corresponding eigenvalues satisfy λ = 0. This follows because ψ(γ) is homogeneous
of degree zero in γ. In [30] it is shown that this implies γTBγγ = 0 at all points at

which ψ̇(γ) is well defined, and this implies the result.
The modified Prony algorithm solves (9) using a succession of linear problems

converging to λ = 0. Given an estimate γk of the solution γ̂, solve

[Bγ(γk)− λk+1I]γk+1 = 0

γk+1Tγk+1 = 1

with λk+1 the nearest to zero of such solutions. Convergence is accepted when λk+1

is small compared to ‖Bγ‖. Inverse iteration has proved very satisfactory for solving
the linear eigenproblems. A detailed algorithm is given in [30].

An exactly analogous version of the algorithm can be developed in terms of the
recurrence parameters. The derivative of ψ with respect to δ is

ψ̇δ = 2Bδ(δ)δ

where Bδ is as for Bγ with Xδ replacing Xγ and with the shift operator Xδj =
∂Xδ/∂δj replacing Xγj . Up to a scale factor, Bδ is UTBγU where U is given by (6).
The difference and recurrence versions of the algorithm are distinct algorithms, but
share the same stationary values. The recurrence version was the original algorithm
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developed in [28]. In this paper most emphasis will be given to the difference version
because of its suitability for asymptotic arguments.

Some care is needed in considering the reparametrization from β to the Prony
parameters. The Prony parametrizations are more general, since the difference and
recurrence equations may yield more general solutions, possibly including repeated
roots and damped trigonometric functions, than the sum of exponential functions
given by (2). Since γ and δ may take values for which there is no corresponding sum of
exponentials, solving the least squares problem with respect to the Prony parameters
as above is not necessarily equivalent to solving with respect to β. Theorem 3.1 which
is proved in [28] and [39] shows that the Prony parametrization does in fact solve the
exponential fitting problem, in the sense that if β minimizes the sum of squares
then the corresponding elementary symmetric functions give Prony parameters which
satisfy (9).

Theorem 3.1. Let γ(β) = ‖s‖−1s, with s = S(ζ) and ζ = n(1 − e−β/n). If β
solves ψ̇β = 0, and the βj are distinct, then γ(β) solves ψ̇γ = 0.

3.2. Other Algorithms. Prony’s classical method for exponential fitting con-
sisted of solving the linear system

XT
δ y = 0

with respect to δ to interpolate p exponentials through 2p points. The direct gener-
alization to the overdetermined case, which consists of minimizing the sum of squares

yTXδX
T
δ y(10)

subject to δp+1 = 1 is now called Prony’s Method. Minimizing (10) subject to δT δ = 1
is equivalent to finding the smallest eigenvalue of the (p+ 1)× (p+ 1) matrix M with
components

Mij = yTXδiX
T
δjy,

and this is often called Pisarenko’s Method or the Covariance Method. Applications
and references are given in [22]. Because of their simplicity, the methods of Prony
and Pisarenko have enjoyed considerable popularity over the last three decades, and
the techniques have been adapted to other problems, for example [4] [42] [33] [9].

Comparing with (7) it can be seen that (10) ignores the factor (XT
δ Xδ)

−1 in the
objective function. While Prony’s and Pisarenko’s methods are consistent as σ2 ↓ 0,
Kahn et al [14] show that neither algorithm is consistent as n ↑ ∞ for estimating
exponentials or damped sinusoids. The methods are useful only for low noise levels
regardless of how many observations are available. For estimating pure sinusoids,
Kahn et al show that Pisarenko’s method is consistent but not efficient while Prony’s
remains inconsistent; see also [36] [41] [21].

Another attempt is that of Osborne [27] and Bresler and Macovski [5]. They
identify the correct objective function (7), and propose an eigenvalue iteration for
minimizing it. However they apply reweighting to the objective function rather than
to a modification of the necessary conditions (9), and this has the effect of ignoring
the second term in the expression (8) for Bδ. Their algorithm does not minimize ψ,
but does give consistent estimators of transient signals if a particular choice of scale
is made; see [14].
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3.3. Calculation of B. A general scheme for the calculation of the matrix Bγ
is given in [30]. Some simplification occurs for exponential fitting. The XT

γjy are
the divided differences of the yi of successive orders. Similarly for the Xγjw where
w = (XT

γ Xγ)−1XT
γ y. The matrix Xγ is Toeplitz as well as banded, so only p + 1

elements need to be stored; these are calculated from c = Uγ with U defined by (6).
The matrix XT

γ Xγ is banded, as is its Choleski decomposition, with p sub-diagonal
bands.

The calculation of Bδ is even simpler. The elements of Xδ require no calculation
given δ. The XT

δjy are simply windowed shifts of y, and

yTXδ(X
T
δ Xδ)

−1XT
δiX

T
δj(X

T
δ Xδ)

−1XT
δ y =

n−p−|i−j|∑
k=1

vkvk+|i−j|

where the vk are the components of v = (XT
δ Xδ)

−1XT
δ y. See also [28]. The simplicity

of the recurrence form tempts one to calculate the difference form Prony matrix from
it by Bγ = U−TBδU

−1. This turns out to be equivalent to

Bγij = n−2p(∆i−1TBδ∆
j−1)ij

where ∆ is the divided difference operator. Unfortunately the elements of Bδ are large
and nearly equal, so this calculation involves considerable subtractive cancellation and
is not recommended.

3.4. Recovery of the rate constants. Having estimated γ or δ, we can obtain
µ directly from equation (5) of [30]. Usually though it will be necessary to recover
the rate constants βj for the purpose of interpretation. Given the recurrence form
parameters we solve pδ(z) = 0 to obtain roots ρj = e−βj/n. For large n this is an
ill-conditioned problem because the ρj cluster near 1. Another aspect of the same
problem is that asymptotically the leading significant figures of the δk contain no
information about the βj .

This problem does not arise in the difference formulation. Given the difference
parameters we solve pγ(z) = 0 to obtain roots ζj = n(1− e−βj/n), and the final step

βj = −n log(1− ζj/n)

= n

∞∑
j=1

j−1(ζj/n)j

will cause problems only in the unlikely event that ζj is large and negative. Unfortu-
nately a non-negligible amount of subtractive cancellation does occur in another part
of the difference form calculations, namely when forming the XT

γjy in the calculation
of Bγ .

4. Asymptotic Stability. The key result for stability of the modified Prony is
the convergence of the matrix 1

nBγ to a positive semi-definite limit. The expectation

of Bγ is σ2 times the Fisher information matrix for γ given α, namely E[σ2ψ̈γ/2].
This is shown in Section 7 of [30] to be µ̇Tγ PXµ̇γ , where µ̇ is the gradient matrix of
µ with respect to γ.

Theorem 4.1.

1

n
Bγ(γ̂)

a.s.→ J0
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as n→∞ where

J0 = lim
n→∞

1

n
µ̇Tγ PXµ̇γ(γ0)

is σ2 times the limiting Fisher information per observation. Also J0 is positive semi-
definite with null space spanned by γ.

Among the consequences of this theorem are that the Moore-Penrose inverse of
1
nBγ(γ̂) estimates the asymptotic covariance matrix of

√
nγ̂/σ, and that the zero

eigenvalue Bγ(γ̂) is asymptotically isolated with multiplicity one.
It is show in [30] that the derivative at γ̂ of the iteration function defined by the

modified Prony algorithm is

Gn(γ) = Bγ(γ)+Ḃγ(γ)γ.

The algorithm is linearly convergent with limiting contraction factor given by the
spectral radius of Gn(γ̂) [31]. Theorem 4.2 combines Theorem 4.1 with the result
that 1

n Ḃγ(γ̂)γ̂ → 0.
Theorem 4.2.

Gn(γ̂)
a.s.→ 0

as n→∞.
A corollary is that the algorithm is asymptotically stable at γ̂. The spectral

radius of Gn(γ̂) can in fact be shown to be O(1/
√
n) in probability.

Theorem 4.2 applies also to the recurrence version of the algorithm, as can be seen
from Theorem 4.1 of [30]. There is however no corresponding recurrence version of
Theorem 4.1. The recurrence matrix Bδ has in fact a very interesting eigenstructure
dominated by powers of n. Let H be the p× p matrix with elements

Hij = (−1)i−j
(
j − 1

i− 1

)
for i ≤ j and 0 otherwise. Then

U = H


1

n
. . .

np


so that

Bδ = H−T


np

. . .

n
1

 Bγ


np

. . .

n
1

H−1 .

Let fk be the polynomial of degree k−1 which satisfies fk(i) = 0, for i = 1, . . . , k−1,

and fk(k) = 1. Let hk = (fk(1), · · · , fk(p+ 1))
T

. Then HThk = ek is the kth
coordinate vector, so the hk are the columns of H−T , and

Bδ =

p+1∑
i,j=1

np−i+1np−j+1H−Teie
T
i Beje

T
j H
−1

=

p+1∑
i,j=1

np−i+1np−j+1Bijhih
T
j .
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The following argument shows that, while Bδ has a zero eigenvalue when evaluated
at δ̂, the other eigenvalues have orders which are increasing odd powers of n.

Firstly, for large n, all proper submatrices of Bγ(γ̂) are nonsingular. This follows
because γ̂1 and γ̂p+1 are nonzero (none of the true rate constants β0j may be zero)
and γ̂ spans the null space of Bγ(γ̂). In particular, the diagonal elements of Bγ(γ̂)
are nonzero—from Theorem 4.1 they are O(n). Let x1, . . . ,xp+1 be the orthonormal
sequence obtained from h1, . . . ,hp+1 by Gram-Schmidt orthonormalization. This is
equivalent to

xk = (HHT )1/2hk

where (HHT )1/2 is the Choleski factor of HHT . The largest and smallest eigenvalues
are given by the extreme values of the Rayleigh quotient:

λ1 = max
zT z=1

zTBδz , λp+1 = min
zT z=1

zTBδz .

Asymptotically, these are achieved by z = x1 = (p + 1)−1/21 giving λ1 = O(n2p+1),
and z = xp+1 giving λp+1 = O(n). Defining the remaining eigenvalues recursively,
the kth eigenvalue of Bδ in decreasing order is asymptotically equal to

max
zT xj=0, j<k

zT z=1

zTBδz

which is asymptotically achieved by z = xk, and is O(n2p+1−2(k−1)).

5. Including a Linear Constraint. Two methods of handling one or more
linear constraints on the βj are considered. The first is convenient with the recurrence
form algorithm. The second is convenient when including a constant term with the
difference form algorithm.

Suppose prior information about γ can be expressed as the linear constraint
gTγ = 0. For example the constant term model

µ(t) = α1 +

p∑
j=2

αje
−βjt(11)

corresponds to β1 = 0 and hence to eT1 γ = 0 in the difference formulation or 1T δ = 0
in the recurrence formulation. The appropriate objective function is

F (γ, λ, ν) = ψ(γ) + λ(1− γTγ) + 2νsγTg

where λ and ν are Lagrange multipliers, and s is a scale factor chosen for numerical
conditioning. Differentiating gives

Ḟγ = 2Bγ(γ)γ − 2λγ + 2νsγ

Ḟλ = 1− γTγ

Ḟν = 2sγTg .

The necessary conditions for a minimum may be summarized as the generalized eigen-
problem

(A− λP )v = 0 , vTPv = 1(12)
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with

A =

(
Bγ sg
sgT 0

)
, v =

(
γ
ν

)
and P =

(
Ip 0
0 0

)
.

Premultiplying the equation Ḟγ = 0 by γT shows that λ must be zero at a solution
of (12). The eigenproblem is solved by solving the sequence of linear problems(

A(γk)− λk+1P
)
vk+1 = 0 , vk+1TPvk+1 = 1 .(13)

This modifies the detailed algorithm given in Section 5 of [30]. The inverse iteration
sequence, which finds the eigenvalue of A(γk) closest to zero, now becomes

l := 1
ηl := 0
vl := current estimate of γ
repeat (inverse iteration)

wl+1 := (A− ηlP )−1Pvl

vl+1 := Pwl+1/‖Pwl+1‖∞
wl+2 := (A− ηlP )−1vl+1

ηl+2 := ηl + wl+2Tvl+1/wl+2Twl+2

vl+2 := wl+2/‖Pwl+2‖2
l := l + 2

until |ηl − ηl−2| < ε.
The eigenvalues of (13) are unaffected by s, since

det(A− λP ) = det

(
Bγ − λI sg
sgT 0

)
= s2 det

(
Bγ − λI g
gT 0

)
,

so we can take s to have a scale comparable to the elements of Bγ without affecting
the rate of convergence of the iteration. The determinant is a polynomial in λ of
order only q, so the constraint has reduced the dimension of the eigenproblem. This
technique, with δ and Bδ replacing γ and Bγ throughout, is used in Section 6 to fit
models of the form (11) using the recurrence form algorithm.

An alternative approach to the constraint is to explicitly deflate the dimension
of Bγ . Let W be a (p + 1) × p matrix of full rank satisfying WTg = 0. We can set
WTW = I. Then Wτ = γ and (12) is equivalent to

(WTBγW − λI)τ = 0 , τT τ = 1.

If g = e1 then W can be chosen as W = [0 Ip]
T so that WTBγW is simply the trailing

p× p matrix of Bγ . This technique has been used to fit models of the form (11) using
the difference form algorithm.

6. A Numerical Experiment. Osborne [28] gave an example of the modified
Prony algorithm on a real data set, showing excellent convergence behaviour. This
section compares the modified Prony algorithm with a good general purpose nonlin-
ear least squares procedure, namely the Levenberg modification of the Gauss-Newton
algorithm, on a simulated problem. The modified Prony algorithm was implemented
in its recurrence form with the augmentation of Section 5. The Levenberg algorithm
was implemented essentially as described by [29], the Levenberg parameter having
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expansion factor 2, contraction factor 10 and initial value of 1. The tolerance param-
eter which determines the precision of the estimates required—roughly, the relative
change in the root sum of squares—was set to 10−7. Although the Prony and Leven-
berg convergence criteria are not strictly comparable, the Prony tolerance parameter
was adjusted to 10−15 so that the two algorithms returned estimates on average of
the same precision.

Data was simulated using the mean function µ(t) = .5+2e−4t−1.5e−7t. Data sets
were constructed as described in [30] to have standard deviations σ = .03, .01, .003, .001
and sample sizes n = 32, 64, 128, 256, 512. Ten replicates were generated for each of
the four distributions: the normal, student’s t on 3 d.f. (infinite third moments), log-
normal (skew) and Pareto’s distribution with k = 1 and α = 3 (skew and infinite third
moments). Uniform deviates were generated from the NAG subroutine G05CAF (Nu-
merical Algorithms Group, 1983) with seed 1984, the first 200 values being discarded
for seed independence.

To remove subjectivity, the true parameter values themselves were used as starting
values. These were quite far from the least squares estimates for small n and large σ,
less so for large n and small σ, as can be seen from Table 3.

The modified Prony convergence results were almost identical for the four distri-
butions. Apparently it is little affected by skewness or by the third and higher mo-
ments of the error distribution (although the actual least squares estimates returned
are affected). The Levenberg algorithm was adversely affected by non-normality for
n ≤ 64 but was unaffected for n ≥ 128. Only the results for the normal distribution
are reported in detail.

Table 1
Median and maximum iteration counts, and number of failures, for exponential fitting. Results

for the Prony algorithm are above those for the Levenberg algorithm.

n\σ 0.030 0.010 0.003 0.001

32 6 11 6 4 6 5 3 4 1 3 3 0
40 40 6 33 40 5 26 40 4 16 40 1

64 4 8 5 3 4 5 2 3 1 2 2 0
32.5 40 5 31.5 40 5 20 40 2 13 22 1

128 3 3 2 2 3 2 2 2 0 1.5 2 0
16.5 40 2 10 40 2 8 34 0 6 18 0

256 2 3 4 2 2 3 1 1 0 1 1 0
30 30 4 20 40 4 14 32 1 10 12 1

512 1 1 4 1 1 1 1 1 0 1 1 0
36.5 40 5 19.5 40 3 13 22 0 7.5 12 0

As Table 1 shows, the Prony algorithm required dramatically fewer iterations
than the Levenberg algorithm to estimate the exponential model from the normal
data. Furthermore, individual Prony iterations used less machine time on average
than those of the Levenberg algorithm, for which many adjustments of the Levenberg
parameter were required. The Levenberg algorithm was limited to 40 iterations, and
was regarded as failing if it did not converge before this. Prony obliged by always
converging, but did so sometimes to complex roots. These were regarded as failures
of Prony for the purposes of the current study. However in all such cases the Prony
algorithm found a sum of damped sinusoids which fitted the data more accurately than
did any sum of exponentials, and in practice this would often be a valid solution. The
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Levenberg algorithm failed whenever Prony did. For both programs failure occurred
when the estimates of β2 and β3 were relatively close together.

Table 2
Mean of σ̂ over 10 replicates. Given are the leading significant figures, those for Prony above

those for Levenberg.

n\σ 0.030 0.010 0.003 0.001

32 2885 97251 292062 9737559
2942 98661 293552 9737579

64 2889 96409 289308 9644329
2914 96879 298484 9644324

128 2945 98177 294538 9817982
2950 98259 294538 9818041

256 2937 97896 293686 9789516
2940 97925 293686 9789513

512 2981 99362 298085 9936191
2983 99376 298085 9936189

Table 2 gives estimated standard deviations averaged over the 10 replications.
Reflecting as it does the minimized sums of squares, it gives some idea of comparative
precision achieved by the two algorithms. However the sums of squares are not strictly
comparable when complex roots occur — in those cases, Prony always achieves a lower
sum of squares by including implicitly trigonometric terms in the mean function.

Table 3
Means and standard deviations of estimates of β2 and β3. True values are 4 and 7 respectively.

n\σ 0.030 0.010 0.003 0.001

32 4.089(1.4) 4.127(.78) 4.138(.40) 4.065(.18)
17.08(28.) 7.420(2.0) 6.872(.82) 6.901(.36)

64 3.937(1.0) 4.083(.60) 4.101(.31) 4.030(.11)
8.629(3.7) 7.169(1.4) 6.876(.63) 6.952(.23)

128 3.930(.66) 4.007(.39) 4.029(.20) 4.005(.06)
7.680(1.9) 7.132(.85) 6.977(.39) 6.995(.12)

256 4.022(.83) 4.071(.47) 4.024(.18) 4.004(.06)
7.721(2.1) 7.072(1.0) 6.992(.36) 7.001(.12)

512 4.216(.65) 4.139(.37) 4.043(.13) 4.012(.04)
6.974(1.7) 6.830(.78) 6.930(.27) 6.979(.09)

Table 3 gives means and standard deviations of the smaller and larger estimated
rate constants respectively.

7. Concluding Remarks. In the simulations and in other experiments, the
modified Prony algorithm has been found not only to converge rapidly but to be
remarkably tolerant of poor starting values. A complete explanation of this behaviour
has not yet been made, but the reparametrization from the rate constants to the
Prony parameters is undoubtedly an important part. Only average performance was
observed from the modified Prony algorithm in fitting rational functions for which no
reparametrization is involved [30].

The eigenstructure of Bδ, described in Section 4, raises a potential problem for the
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convergence criterion of the modified Prony algorithm, but one that seems mitigated
in practice. With three exponential terms in the simulations the largest eigenvalue of
n−1Bδ is O(n6). This suggests that the very rapid convergence of the algorithm for
large sample sizes is an artifact of numerical ill-conditioning in Bδ. The algorithm,
however, actually returns excellent estimates, even for n = 512, and a fully satisfactory
explanation of this phenomenon is yet to be made. While the eigenvalues of the
difference form Prony matrix Bγ are all of the same order, limited experiments suggest
that the recurrence and difference form algorithms are very similar in their practical
behaviour.

Appendix. Proofs of the Stability Theorems. Proofs of the stability The-
orems 4.1 and 4.2 require that Xγ and Xγi be related through matrices that have
explicit eigen-factorizations. This is achieved by augmenting Xγ to the n × n circu-
lant matrix

C =



c1 cp+1 . . . c2
...

. . .
. . .

...
c1 cp+1

cp+1 c1
. . .

...
...

. . .

cp+1 cp . . . c1


.

Then Xγ = CPT , where P is the (n−p)×n matrix (I 0) which picks out the leading
n− p columns of C. In fact,

CT =

q+1∑
k=1

γk∆k−1 =

q+1∑
k=1

ckΠk−1

where Π is the circulant forward shift matrix circ(0, 1, 0, . . . , 0) and ∆ is the circulant
difference matrix Π = n(Π − I). Write Ck = ∂C

∂γk
= ∆k−1 and Dk = CkC

−1 for

k = 1, . . . , q+ 1. Note that the Dk are smoothing operators, since C−1 is the solution
operator for a difference equation. Then we have the key identity

XT
γi = PCTi = PCTC−TCTi = XT

γ D
T
i ,

which leads to the following expansion for Bγ :
Lemma 7.1. The components of 1

nBγ can be expanded as

1

n
Bγij =

1

n
(µ0 + ε)TDi(I − PA)DT

j (µ0 + ε)

− 1

n
(µ0 + ε)T (I − PA)DT

i Dj(I − PA)(µ0 + ε)

where µ0 + ε = y. The importance of this lemma lies in its representation for Bγ in
terms of projections and smoothing operators.

The remainder of the proof of Theorem 4.1 consists of using the law of large
numbers to show that the terms involving ε in the above expansion are asymptotically
negligible. A similar application of the law of large numbers was given in [30]. For

example, the components of 1
nA

T ε
a.s.→ 0 because each column aj of A is smooth in

the sense that it can be defined as the values taken by a continuous function, namely
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e−βjt, at the time points t = t1, . . . , tn. The convergence moreover is uniform in β
because e−βjt is jointly continuous in βj and t. The lemmas below show that terms
like 1

nA
TDT

u ε and 1
nA

TDT
uDvε tend to zero also because Duaj and DT

v Duaj are
smooth in the same sense as above.

The lemmas are proved directly by construction using the properties of circulant
matrices. A circulant matrix of the form of CT has complex eigenvalues

λi = pc(ω
i−1) =

q+1∑
k=1

ckω
(i−1)(k−1)

where ω = exp{ 2πn
√
−1} is the nth fundamental root of unity. Also

CT = Ω∗ΛΩ

where Ω is the n×n Fourier matrix defined by Ω∗ij = ω(i−1)(j−1), which is both unitary
and circulant, and where Λ = diag(λ1, . . . , λn). See [3] or [8]. For any vector z, Ωz is
the discrete Fourier transform and Ω∗z is the inverse discrete Fourier transform. Also
the polynomial pc(·) is the transfer function of CT . Since Du and Dv are also circulant,
the vectors Duaj and the DT

v Duaj can be constructed by explicitly evaluating the
discrete Fourier transform of aj , multiplying by the appropriate transfer function, and
inverting back to the time domain.

Lemma 7.2. The sequence

fk = ρk−1 k = 1, . . . , n ,

where ρ is any constant, has discrete Fourier transform

Fk = n−1/2(1− ρn)(ωk−1 − ρ)−1ωk−1 k = 1, . . . , n

where ω is the fundamental nth root of unity.
Proof. Follows from summing a geometric series in ω−(k−1)ρ, and using ωn = 1.

Lemma 7.3. The sequence

Fk = n−1/2(ωk−1 − ρ)−2ω2(k−1) k = 1, . . . , n ,

where ρ is any constant, has inverse discrete Fourier transform

fk = (1− ρn)−2kρk−1 k = 1, . . . , n .

Proof. Uses geometric series identities and

n−1∑
j=0

ωmj = 0

for positive integers m.
The next two lemmas follow from the partial fraction theorem.
Lemma 7.4. If p(z) is a polynomial of degree less than r, then

F (z) =
p(z)

(z − a1) · · · (z − ar)
=

r∑
j=1

bj
z − aj
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with

bj = Q−1j p(aj) , Qj =

r∏
k=1
k 6=j

(aj − ak) .

Lemma 7.5. If p(z) is a polynomial of degree at most r, then

F (z) =
p(z)

(z − a1)2(z − a2) · · · (z − ar)
=

b1z

(z − a1)2
+

r∑
j=2

bj
z − aj

−
r∑
j=1

bj
z − a1

with

b1 =
p(a1)

a1Q1
, bj =

p(aj)

(aj − a1)Qj
, Qj =

r∏
k=1
k 6=j

(aj − ak) .

Lemma 7.6. For each u, there exist functions fj, continuous on [0, 1], such that

(DuA)ij = fj(ti) +O

(
1

n

)
uniformly for i = 1, . . . , n and j = 1, . . . , p.

Proof. The operator Du can be written

Du = ∆T (u−1)
p∏
j=1

(∆T + ζjI)−1

which has transfer function

λ(z) =
nu−1

np
(z−1 − 1)u−1∏p
j=1(z−1 − ρj)

z = ω0, . . . , ωn−1 .

Here ρj = e−βj/n and ζj = n(1 − ρj). Using Lemma 7.2, Dua1 has discrete Fourier
transform

F (z) = λ(z)n−1/2ρ1z
1− ρn1
z − ρ1

z = ω0, . . . , ωn−1

which, using Lemma 7.4, can be written as

n−1/2
nu−1

np
ρ1(1− ρn1 )

{ p∑
j=1

bj
z−1 − ρj

+
c

1− z−1ρ1

}
with

bj =
(ρj − 1)u−1

(1− ρjρ1)
∏p

k=1
k 6=j

(ρj − ρk)

and

c =
(ρ−11 − 1)u−1∏p
j=1(ρ−11 − ρj)

.
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Reversing Lemma 7.2, we obtain (Dua1)s as

nu−1

np
ρ1(1− ρn1 )

{ p∑
j=1

bj(−ρ−1j )

1− ρ−nj
ρ
−(s−1)
j +

c

1− ρn1
ρs−11

}

=
nu−1

np

{
−

p∑
j=1

bjρ1(1− ρn1 )

1− ρ−nj
ρ−sj + cρs1

}
.

Using the fact that ζj → βj , we find that

nu−1

np
bj = bj∞ + o

(
1

n

)
,

nu−1

np
c = c∞ + o

(
1

n

)
where

bj∞ =
(−βj)u−1

(β1 + βj)
∏p

k=1
k 6=j

(βk − βj)

and

c∞ =
(−β1)u−1∏p
k=1(β1 + βk)

do not depend on n. So let

f1(t) = c∞e
−βt −

p∑
j=1

bj∞
1− e−β1

1− eβj
eβjt .

The other functions f2, . . . , fp are defined similarly.
Lemma 7.7. For each u and v, there exist functions gj, continuous on [0, 1], such

that

(DT
v DuA)ij = gj(ti) +O

(
1

n

)
uniformly for i = 1, . . . , n and j = 1, . . . , p.

Proof. The operator

DT
v Du = ∆v−1∆u−1T

p∏
j=1

(∆ + ζjI)−1(∆T + ζjI)−1

has transfer function

λ(z) =
nu+v−2

n2p
(z−1 − 1)u−1(z − 1)v−1∏p
j=1(z−1 − ρj)(z − ρj)

z = ω0, . . . , ωn−1 .

Therefore DT
v Dua1 has discrete Fourier transform

F (z) = λ(z)n−1/2ρ1(1− ρn1 )
z

z − ρ1

= n−1/2
nu+v−2

n2p
ρ1(1− ρn1 )

zzp−u+1(1− z)u−1(z − 1)v−1

(z − ρ1)2
∏p
j=2(z − ρj)

∏p
j=1(1− zρj)

,
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which can be written, using Lemma 7.5, as

n−1/2
nu+v−2

n2p
ρ1(1−ρn1 )z

{
b1z

(z − ρ1)2
+

p∑
j=2

bj
(z − ρj)

+

p∑
j=1

cj
(1− zρj)

−
∑p
j=1(bj + cj)

(z − ρ1)

}
with

b1 =
ρ
(p−u+1)
1 (1− ρ1)u−1(ρ1 − 1)v−1

ρ1
∏p
k=2(ρ1 − ρk)

∏p
k=1(1− ρ1ρk)

bj =
ρ
(p−u+1)
j (1− ρj)u−1(ρj − 1)v−1

(ρj − ρ1)2
∏p

k=2
k 6=j

(ρj − ρk)
∏p
k=1(1− ρjρk)

and

cj =
ρ
−(p−u+1)
j (1− ρ−1j )u−1(ρ−1j − 1)v−1

(ρ−1j − ρ1)2
∏p
k=2(ρ−11 − ρk)

∏p
k=1
k 6=j

(1− ρ−1j ρk)
.

Using Lemmas 7.2 and 7.3 to invert F (z), we obtain (DT
v Dua1)s as

nu+v−2

n2p
ρ1(1− ρn1 )

{
b1

(1− ρn1 )2
sρs−11 +

p∑
j=2

bj
1− ρnj

ρs−1j

−
p∑
j=1

cjρ
−1
j

1− ρ−nj
ρ
−(s−1)
j −

p∑
j=1

bj + cj
1− ρn1

ρs−11

}
.

Using ζj → βj we find

nu+v−2

n2p
nb1 = b1∞ + o

(
1

n

)
,

nu+v−2

n2p
bj = bj∞ + o

(
1

n

)
nu+v−2

n2p
cj = cj∞ + o

(
1

n

)
with

b1∞ =
(−1)v−1βu+v−21

2β1
∏p
k=2(β2

k − β2
1)

bj∞ =
(−1)v−1βu+v−2j

2βj(β1 − βj)
∏p

k=1
k 6=j

(β2
k − β2

j )

cj∞ =
(−1)u−1βu+v−2j

2βj(β1 + βj)
∏p

k=1
k 6=j

(β2
k − β2

j )

which do not depend on n. So let

g1(t) =
c1∞

1− e−β1
te−β1t +

p∑
j=2

bj∞
1− e−β1

1− e−βj
e−βjt

−
p∑
j=1

cj∞
1− e−β1

1− eβj
eβjt −

p∑
j=1

(bj∞ + cj∞)e−βjt .
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The other functions g2, . . . , gp can be defined in a similar fashion.
The final lemma differs from Lemma 7.7 in that Du and Dv are evaluated at the

current value of γ while A is evaluated at the true value γ0. Its proof is similar to that
of Lemma 7.7, with the difference that all the poles of the discrete Fourier transform
F (z) are simple, and each function g0j(t) includes a term in e−β0t as well as in e−βkt

and eβkt, k = 1, . . . , p.
Lemma 7.8. Let A0 = A(γ0). For each u and v, there exists functions g0j,

continuous on [0, 1], such that

(DT
v DuA0)ij = g0j(ti) +O

(
1

n

)
uniformly for i = 1, . . . , n and j = 1, . . . , p.

Proof of Theorem 4.1. Consider the expansion for 1
nBγ given in Lemma 7.1.

The terms

1

n
εTDiD

T
j ε−

1

n
εTDT

i Djε

cancel out of this expansion — Di and Dj commute since they are circulants. Re-
peated application of Lemmas 7.6 to 7.8 and the law of large numbers [30, Theorem 4]
shows that all other terms which involve ε converge to zero. The first term for example
is

1

n
µT0DiPAD

T
j ε = (

1

n
µT0DiA)(

1

n
ATA)−1)(

1

n
ATDT

j ε).(14)

The middle term 1
nA

TA converges to the positive definite matrix with elements∫ 1

0

e−(βi+βj)tdt

for i, j = 1, . . . , p, and each element of 1
nA

TDT
j ε converges to zero almost surely, by

Lemma 7.6 and the law of large numbers. Lemma 7.6 also shows that each element
of 1

nµ
T
0DiA converges to a constant, hence the whole term (14) converges to zero.

Moreover the convergence is uniform for γ in a compact set. Similarly, the term

εTPAD
T
i DjPAε = (

1

n
εTA)(

1

n
ATA)−1(

1

n
ATDT

i DjA)(
1

n
ATA)−1(

1

n
AT ε)

converges to zero. Lemma 7.6 shows that 1
nA

TDT
i DjA converges to a constant p× p

matrix, and the law of large numbers shows that 1
nA

T ε converges to zero. This term
is in fact of smaller order than the first, since it includes two factors which converge
to zero.

The other terms involving ε are treated in the same way, and require Lemmas 7.7
and 7.8. The remaining terms can be identified with J0, thus completing the proof.

Proof of Theorem 4.2. Section 7 of [30] gives an expression for Ḃγγ and shows

that E(Ḃγ(γ0)γ0) = 0. The methods used above for Theorem 4.1 can be used to
prove that

1

n
Ḃγ(γ̂)γ̂

a.s.→ 0
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as n→∞. Now γ̂T Ḃγ(γ̂)γ̂ = 0 so

G(γ̂) =

[
1

n
Bγ(γ̂) + γ̂γ̂T

]−1
1

n
Ḃγ(γ̂)γ̂.

Theorem 4.1 shows that 1
nBγ(γ̂)+γ̂γ̂T

a.s.→ J0+γ0γ
T
0 which is positive definite, which

completes the theorem.
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