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Abstract

This paper reformulates, generalizes and investigates the stability
of the modified Prony algorithm introduced by Osborne (1975), with
special reference to rational and exponential fitting. The algorithm,
originally for exponential functions, is generalized to the least squares
fitting of any function which satisfies a linear homogeneous difference
equation. Using the difference equation formulation, the problem is
expressed as a separable regression, and hence as a nonlinear eigen-
problem in terms of the coefficients of the difference equation. The
eigenproblem involves finding the null space of a matrix of data dif-
ferences B, and is solved using a variant of inverse iteration. Stability
of the algorithm is shown to depend on the fact that B closely ap-
proximates the Hessian of the sum of squares. The expectations of
B and the Hessian are evaluated. In the case of rational fitting, the
relative difference between B and the Hessian is shown to converge
to zero almost surely. Some details of the implementation of the al-
gorithm are given. A simulation study compares the modified Prony
algorithm with the Levenberg algorithm on a rational fitting problem,
and supports the theoretical results.
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1 Introduction

This paper reformulates, generalizes and investigates the stability of the mod-
ified Prony algorithm introduced by Osborne (1975). The algorithm, origi-
nally for exponential functions, is generalized to provide least squares fitting
of any function which satisfies a linear homogeneous difference equation (e.g.
to fit compartment models). The main interest is in functions for which the
difference equation is an exact discrete analogue of the limiting differential
equation, and especially in the specific examples of rational and exponential
function fitting.

In a classic paper, Prony (1795) proposed a method for interpolating
a sum of exponential functions through a series of data values at equally
spaced points. He solved a system of linear equations for the coefficients
of a difference equation satisfied by the exponential functions, and obtained
the exponential functions from the roots of the polynomial with those coef-
ficients. Prony’s method was extended to the least squares context by, for
example, Householder (1950), and is actively used in systems engineering
and time series (for example, Marple (1987), Mulholland et al (1986)). But
a formulation which returned the actual least squares estimators was not
produced until Osborne (1975), who proposed a modified Prony algorithm
in which a nonlinear eigenproblem is solved for the coefficients of the differ-
ence equation. Osborne (1975) showed, by way of a simulation study, that
the algorithm converged with surprising speed, but didn’t provide a theoret-
ical justification. He also indicated an extension to rational function fitting,
without verifying the numerical properties.

This paper is directed towards proving that the algorithm is asymptoti-
cally stable, ie that it converges at a rapid rate from good starting values for
sufficiently large data sets. (This is analogous to the result proved by Jen-
nrich (1969) for the Gauss-Newton algorithm.) Although the general form of
the proof is shown, the proof is completed here only for rational functions.
The rational fitting case involves a minimum of special complication, and
least obscures the general case. The corresponding result for exponential
functions was proved by Smyth (1985), and will be given in a separate paper
to be devoted to the special features of the exponential fitting case.

The problem considered is that of fitting a given continuous function µ
to the data pairs (ti, yi), i = 1, . . . , n by least squares. Let µi = µ(ti) and
µ = (µ1, . . . , µn)T . The errors yi − µi are assumed to be independent and to
have equal and finite variances. We show that if the µi satisfy a difference
equation, linear and homogeneous in a parameter vector γ, then the least
squares problem may be formulated as a nonlinear eigenproblem, which can
be solved using a variant of inverse iteration. Section 2 shows that the
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difference equation can be expressed in matrix terms as

X(γ)Tµ = 0

where X is a banded linear matrix function of γ. Section 3 shows that the
least squares problem, concentrated in terms of the nonlinear parameters,
may be solved by minimizing

ψ(γ) = yTPXy

where PX is the projection onto the space R(X) spanned by the columns of
X. Furthermore the gradient of ψ is given by

ψ̇(γ) = 2B(γ)γ

where B is a symmetric matrix function of γ. Section 4 relates the results
to rational and exponential fitting. Section 5 describes in detail the modified
Prony algorithm, and briefly discusses the effect of the constraint used to
standardize γ. Section 6 shows that a sufficient condition for convergence is
that B should closely approximate ψ̈/2, and Section 7 evaluates the expecta-
tions of these quantities. Sections 8 to 10 discuss the asymptotic eigenstruc-
ture of X and B, and show that for rational fitting B+(ψ̈/2− B)→ 0 with
probability one, thus establishing the stability of the algorithm.

Rational fitting is usually accomplished using the Gauss-Newton algo-
rithm or its Levenberg or Marquardt modifications (Ratkowsky, 1985; Bates
and Watts, 1988), so Section 11 compares the modified Prony algorithm with
the Levenberg algorithm on a rational fitting problem using a small simula-
tion study.

2 The Difference Equation

We assume that µ(t) satisfies a difference equation of the form

p+1∑
k=1

dk(t;γ)∆k−1µ(t) = 0 (1)

and that the coefficients dk are continuous in t and linear and homogeneous
in some unknown γ ∈ IRq+1. We call γ the Prony parameters . For simplicity,
we will assume that the times ti at which µ is sampled are equally spaced
over a fixed interval, although the results of this paper require only that
the empirical distribution of the ti converges to a non-trivial probability
distribution. Without loss of generality we take that interval to be [0, 1] so
that ti = 1/n, and define ∆ to be the forward difference operator

∆f(t) = n [f(t+ 1/n)− f(t)] .
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Generally γ and d = (d1, . . . , dp+1)
T will depend on n, but we will usually not

make this explicit in our notation. Since the scales of γ and d are disposable,
we will adjoin the condition γq+1 = 1 or ‖γ‖ = 1 with respect to some inner
product, whatever is most convenient, and similarly for d.

By assumption, the dk may be expanded into

dk(t;γ) =
q+1∑
j=1

γjdkj(t)

where the dkj are known continuous functions, so (1) may be rewritten as

q+1∑
j=1

γj

p+1∑
k=1

dkj(t)∆
k−1

µ(t) = 0.

This may be translated into matrix terms in the following way. Let Π be the
n× n circulant forward shift operator

Π =


0 1 0 . . . 0
0 0 1 . . . 0

...
1 0 0 . . . 0


and let ∆ be the circulant difference matrix ∆ = n(Π− I). Then µ satisfies

P
q+1∑
j=1

γj

p+1∑
k=1

〈dkj(t)〉∆k−1µ = 0

where 〈dkj(t)〉 denotes the diagonal matrix with diagonal elements dkj(t1) to
dkj(tn), and P = (In−p 0) selects the leading (n− p) rows. (Throughout this
paper, scalar functions are taken to act componentwise on vectors, and 〈·〉
denotes a diagonal matrix with the components of the vector argument down
the diagonal.) Write also

CT
j =

p+1∑
k=1

〈dkj(t)〉∆k−1

and

C =
q+1∑
j=1

Cjγj.

Let Xj = CjP
T , the leading n− p columns of Cj, and let

X =
q+1∑
j=1

γjXj.
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Then (1) may be re-expressed in matrix terms as

PC(γ)Tµ = 0

or
X(γ)Tµ = 0. (2)

Note that X is a n × (n − p) matrix with p + 1 bands, and that it has full
column rank if dp+1 6= 0. Although the above definition in terms of circulant
operators is often convenient, the last p columns of C are arbitrary as far
as (2) is concerned; in the next section we will assume that they have been
chosen to ensure that C is invertible.

The above derivation depended on µ(t) satisfying exactly a difference
equation. In practice, it will often be the case that µ(t) came as the general
solution of a differential equation, say of

p+1∑
k=1

bk(t; ξ)Dk−1µ(t) = 0 (3)

where D is the differential operator and the coefficients bk are linear and
homogeneous in ξ. Until Section 8 of this paper we will assume only the
difference equation (1). In the remaining sections, which deal with asymp-
totics, we will assume that µ satisfies the differential equation (3) also, and
that the difference equation converges to it, in the sense that γ → ξ and
d→ b as n→∞.

The most general expression for µ which allows a characterization of the
form (2) is in fact

µ = Z(γ)−TWα (4)

where Z is a linear function of γ and W is a constant n× p matrix. Then

X(γ) = Z(γ)H

where H is any full rank n × (n − p) matrix orthogonal to W . The matrix
H may be chosen to have p+ 1 bands,

H =



h11
...

. . .

hn−p,1
h1,p+1

. . .
...

hn−p,p+1


,

by determining each (hj,1, . . . , hj,p+1)
T to be orthogonal to

wj,1 . . . wj,p
...

...
wj+p,1 . . . wj+p,1

 ,
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which comprises rows j to j + p of W .

3 A Nonlinear Eigenproblem

We now invert the matrix difference equation (2) to obtain an explicit ex-
pression for µ of the form (4). One way is to note that quite generally

C(γ)Tµ =

(
0
α

)

for some α ∈ IRp. Therefore, assuming C is invertible,

µ = C(γ)−TQTα

= A(γ)α (5)

where A = C−TQT and Q is the p × n matrix (0 Ip). The p columns of
A correspond to a particular set of fundamental solutions of the difference
equation (1), depending on how the last p columns of C have been chosen.
In any case, (5) displays µ as a separable regression, with α and γ as the
linear and nonlinear parameters respectively. For any fixed value of γ the
sums of squares

φ(α,γ) = (y − µ)T (y − µ)

is minimized by
α̂(γ) = (ATA)−1ATy. (6)

Substituting this back into φ gives the reduced sum of squares

ψ(γ) = φ(α̂(γ),γ)

= yT (I − A(ATA)−1AT )y

= yT (I − PA)y (7)

where PA is the orthogonal projection onto R(A). The least squares problem
may be solved by minimizing ψ with respect to γ, and recovering the least
squares estimate of α from (6). Note that XTA = 0, so that the columns
of X and A span orthogonal spaces. Therefore (7) can be written more
conveniently as

ψ(γ) = yTPXy. (8)

Since PX = X(XTX)−1XT , ψ has partial derivatives

ψ̇i = 2yTXi(X
TX)−1XTy − 2yTX(XTX)−1XT

i X(XTX)−1XTy

= 2
q+1∑
j=1

γjBij
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with

Bij = yTXi(X
TX)−1XT

j y − yTX(XTX)−1XT
i Xj(X

TX)−1XTy

Therefore, gathering the Bij into a symmetric matrix function of γ, we have

ψ̇(γ) = 2B(γ)γ.

Assuming that the constraint on γ takes the form γTγ = 1, then ψ(γ) is
minimized by a solution of the nonlinear system

ψ̇(γ) = 2Ḃ(γ)γ = λγ (9)

where λ is the Lagrange multiplier associated with the constraint. The in-
terpretation and solution of this equation as a nonlinear eigenproblem is the
basis of the modified Prony algorithm. Because of its fundamental role in
the algorithm, we call B the Prony matrix .

The derivation and definition of B given above differs from Osborne
(1975) in it’s definition of γ and in that the components of B are displayed
as quadratic functions of y. These changes make possible asymptotic argu-
ments and distributional calculations. The various Prony parametrizations
γ for which the normal equations can be expressed in the form (9) are in fact
linearly related to one another up to a scale factor, and the specific choice
amongst them does not affect the algorithm’s rate of convergence near to a
stationary value (Section 6).

4 Rational and Exponential Fitting

One class of linear homogeneous differential equations for which there are
corresponding difference equations is

pa(D)(q(t;γ)µ(t)) = 0

where pa(·) is any polynomial with known coefficients, and q(t;γ) is any
continuous function of time, linear and homogeneous in γ. The general
solution of these equations has the form

µ(t) =
f(t)

q(t;γ)

where f(t) is the general solution of pa(D)f(t) = 0.
Rational functions arise in the particular case that pa(D) = Dp and

q(t;γ) = pγ(t) =
∑q+1
j=1 γjt

j−1. The general solution is then

µ(t) =
pα(t)

pγ(t)
(10)
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with pα(t) =
∑p
j=1 αjt

j−1. The rational function (10) satisfies the difference
equation

∆p(pγ(t)µ(t)) = 0 (11)

which is of the form (1) with dk(t;γ) =
(

p
k−1

)
∆p−k+1pγ(t). In matrix terms,

(11) is
P∆p 〈pγ(t)〉µ = 0

where ∆ is now the circulant difference matrix. This leads to

XT = P∆p 〈pγ(t)〉

and hence

XT
j =

dXT

dγj
= P∆p

〈
tj−1

〉
where 〈tj−1〉 denotes the diagonal matrix with elements tj−11 to tj−1n .

Let T be the n× p matrix with elements Tij = tj−1i , so that pα(t) = Tα.
For rational fitting, the straightforward choice of CT to be ∆p 〈pγ(t)〉 is not
invertible. If we choose the last p rows of CT to be instead (T TT )−1T T 〈pγ(t)〉,
then the general formula (5) for µ gives A = 〈pγ(t)〉−1 T , and recovers the
parametrization given above in (10).

Comparing rational functions with the general form (4), the denominator
matrix Z(γ) in this case is the diagonal matrix 〈pγ(t)〉. This greatly simplifies
the convergence proofs in Sections 9 and 10, and is the reason for focusing
on rational functions in this paper. The matrix H is the difference operator
∆pP T which has the polynomials as its null space. Extension of rational
fitting to non-equally spaced ti requires only a suitable choice of H. This is
relatively straightforward; a direct formula is given in Osborne (1975).

Suppose now that µ(t) satisfies the constant coefficient differential equa-
tion

p+1∑
k=1

ξkDk−1µ(t) = 0,

and that the polynomial pξ(z) =
∑p+1
k=1 ξkz

k−1 has real, distinct roots −βj.
Then the general solution for µ(t) may be expressed as a sum of exponential
functions

µ(t) =
p∑
j=1

αje
−βjt, (12)

and the corresponding difference equation is

p+1∑
k=1

γk∆
k−1µ(t) = 0
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where the polynomial
∑p+1
k=1 γkz

k−1 has roots−ζj = n(1−e−βj/n). (Notice that
ζj → βj as n → ∞.) In matrix terms the difference equation is PCTµ = 0
with

CT =
p+1∑
k=1

γk∆
k−1.

For exponential fitting, the CT
j are simply ∆j−1, and C is a, generally in-

vertible, circulant matrix.
Since C has p + 1 bands, it has p + 1 distinct non-zero elements, cT =

(c1, . . . , cp+1) say. In Osborne (1975), the algorithm was parametrized di-
rectly in terms of c rather than γ. These two parametrizations will be com-
pared in a separate paper on exponential fitting.

For exponential fitting, (5) expresses µ as a linear combination of periodic
solutions of the difference equation, rather than the more obvious definition
with Aij = e−βjti . Factoring C here, using the complex eigendecomposition
available for circulant matrices, shows that rational and exponential fitting
are, in a sense, dual problems. Let C = FΛF ∗ where F is the Fourier matrix
(Davis, 1979) and Λ is the diagonal matrix of complex eigenvalues. Then

F ∗µ = Λ−1F ∗QTα,

which expresses the discrete Fourier transform of µ as a rational function of
the complex frequency e2π

√
−1/n. In other words, exponential fitting corre-

sponds to rational fitting in the frequency domain.

5 A Modified Prony Algorithm

We now consider the solution of (9). Henceforth we will scale γ to have norm
one, so the problem becomes that of minimizing the reduced sum of squares
ψ(γ) subject to this constraint. Let

F (γ, λ) = ψ(γ) + λ(1− γTγ)

where λ is a Lagrange multiplier. Then

Ḟγ = 2B(γ)γ − 2λγ

and
Ḟλ = 1− γTγ

so the necessary conditions for a stationary point are

(B(γ)− λI)γ = 0 (13)

and
γTγ = 1.
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We now show that λ must be zero at a solution of (13). It can be seen
from (8) that ψ(γ) does not depend on ‖γ‖. Thus ψ̇ must be in a direction
orthogonal to γ, so that

γT ψ̇(γ) = 2γTB(γ)γ = 0. (14)

Premultiplying Ḟγ = 0 by γT , and using (14) gives the result that λ = 0.
This suggests the following iteration. Given a current estimate γk, solve the
linear eigenproblem

(B(γk)− λk+1I)γk+1 = 0 (15)

γk+1Tγk+1 = 1

for γk+1 and λk+1, with λk+1 the nearest to zero of such solutions. Conver-
gence can be accepted when λk+1 is small compared with ‖B‖. This iterative
scheme is the modified Prony algorithm.

Constraint Invariance

The constraint γTγ = 1, which we use here and in the remainder of this
paper, is of course to some extent arbitrary. In particular, the result that the
Lagrange multiplier is zero at a solution holds for any constraint G(γ) = 0
such that γ̂T Ġ(γ̂) 6= 0, for example for any linear constraint κTγ = 0 such
that κ is not orthogonal to γ̂. Quadratic norm constraints are of special
interest, because they correspond to linear reparametrizations of the Prony
parameters. To see this, suppose we had chosen ‖γ‖ = 1 with respect to
some other inner product, say γTAγ = 1 with A a positive definite matrix.
The objective function would have been

F (γ, λ) = ψ(γ) + λ(1− γTAγ)

leading to the generalized nonlinear eigenproblem

(B(γ)− λA)γ = 0

and to the sequence of linear problems

(B(γk)− λk+1A)γk+1 = 0.

This is equivalent to

(A−
1
2B(γk)A−

T
2 − λk+1I)δk+1 = 0

where δ = A
T
2 γ and A

1
2 is any square root satisfying A

1
2A

T
2 = A. If B

has a zero at γ̂ then A−
1
2BA−

T
2 has a zero at δ̂ = A

T
2 γ̂, so using A as the

inner product matrix is equivalent to the linear reparametrization from γ to
δ. This leads to a different modified Prony sequence, but one which has the
same ultimate rate of convergence, as we show in Section 6.
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Implementation

When implemented efficiently, an iteration of the modified Prony algorithm
requires computer time roughly similar to that of an iteration of a Gauss-
Newton type algorithm. The linear eigenproblem (15) can be solved ex-
tremely rapidly by inverse iteration (Wilkinson, 1965). When testing for
convergence, only an order of magnitude estimate of ‖B‖ is required: we
have found 1

q+1

∑
ij |Bij| to be adequate. Our version of the modified Prony

algorithm is given below:

γ0 := starting value
λ0 := 0
k := 0
repeat

ε := τ 1
q+1

∑
ij |Bij|

v0 := γk

η0 := λk

` := 0
{find eigenvalue of B closest λk by inverse iteration}
repeat

w`+1 := (B − η`I)−1v`

{normalize w`+1 for numerical stability}
v`+1 := w`+1/‖w`+1‖∞
w`+2 := (B − η`I)−1v`+1

η`+2 := η` + w`+2Tv`+1/w`+2Tw`+2

v`+2 := w`+2/‖w`+2‖2
` := `+ 2

until |η` − η`−2| < ε
γk+1 := v`

λk+1 := η`

k := k + 1
until |λk| < ε

In the above algorithm, the symmetric system

(B − η`I)w`+1 = v` (16)

may be solved by Gaussian elimination, or by a method specially adapted to
symmetric systems such as diagonal pivoting (Bunch and Kaufman, 1977).
Inverse iteration is implemented in a similar way to that suggested by Os-
borne (1978), with the feature that B − η`I is factored once to solve two
linear systems. The choice of the constant τ (tolerance) reflects the precision
required and the maximum condition number of a matrix that can be stored
in finite arithmetic. For example, in double precision on a 36 bit machine,
τ = 10−15 gives precise solutions.
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Empirical evidence with exponential fitting suggests that the modified
Prony algorithm has an impressive ability to converge to some stationary
value even from quite poor starting values. For exponential fitting the algo-
rithm may be started from γ = e1 (the first coordinate vector), for which
µ(t) is constant. For rational fitting, in contrast, good starting values are
often required and no general recipe can be given.

Calculation of B

The efficient calculation of the Prony matrix B, is the key to the efficient
implementation of the algorithm. This may be done inO(nq2) flops, for which
the banded structure of X is crucial. The following scheme is suggested for
computation.

Y := (XT
1 y . . . XT

q+1y) An (n− p)× (q + 1) matrix
which does not depend on γ.

M := (XTX)
1
2 The Choleski factor, a lower triangular

(n− p)2 matrix with q + 1 bands.

Y := M−1Y (XTX)−
1
2XT

j y, j = 1, . . . , q + 1.

v := M−TY γ (XTX)−1XTy, an n− p vector.

V := (X1v . . . Xq+1v) Xj(X
TX)−1XTy, j = 1, . . . , q + 1,

an n× (q + 1) matrix.
B := Y TY − V TV

If desired, the fitted means may be extracted easily by

µ̂ = PXy = V γ . (17)

For rational fitting the XT
j y are P∆p 〈tj−1〉y, which can be calculated

by repeatedly differencing the 〈tj−1〉y. Also XT is P∆p 〈pγ(t)〉. For rational
fitting, it is efficient to obtain V TV from w = ∆pTP Tv and

(V TV )ij = wT
〈
ti+j−2

〉
w

without first calculating and storing V .
For exponential fitting, XT

j y = P∆j−1y, which can be calculated by
recursive differencing. Similarly for Xjv = ∆j−1TP Tv. In the exponential
fitting case, the matrix X is Toeplitz as well as banded, so only the p+1 non-
zero components of the first column need to be stored. These components,
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cT = (c1, . . . , cp+1) say, are related to γ through c = Uγ with

U =



1 −1 1 · · · (−1)p

1 −2
1

. . .
...

1 −
(
p
1

)
1




1

n
. . .

np

 ,

and again this can be calculated recursively.

6 The Convergence Matrix

In this section we derive sufficient conditions for local convergence of the
modified Prony algorithm. Let us express the modified Prony iteration for-
mally as

γk+1 = F (γk)

where F is defined implicitly by (15). The iteration has a fixed point at the
least squares estimate. It has a point of attraction there also if it converges
to γ̂ from any point in a surrounding neighbourhood. In that case we say it
is stable at γ̂. A sufficient condition for stability is given by Ostrowski’s The-
orem (Ortega and Rheinboldt, 1970), namely that F is Frechét differentiable
and

ρ(Ḟ (γ̂)) < 1

where ρ(·) denotes spectral radius. Following Smyth (1987) and Kass and
Smyth (1989), we call

Ḟ (γ̂) =
dγk+1

dγk
(γ̂)

the convergence matrix and ρ(Ḟ (γ̂)) the convergence factor .
We now obtain the convergence matrix of the modified Prony algorithm.

The theorem assumes that the null space of B(γ̂) has dimension one, so that
it is spanned by γ̂. That this is asymptotically so, is proved in Section 9.
The derivative Ḃ of B with respect to γ is a three dimensional tensor, to be
thought of as an array of partial derivatives ∂B

∂γk
, k = 1, . . . , q + 1. Therefore

Ḃ(γ)γ denotes the (q + 1)× (q + 1) matrix with kth column ∂B
∂γk

γ.

Lemma 1 For all γ, γT γ̇ = 0 and γTB(γ)γ = 0. At the least squares
estimate γ̂T Ḃ(γ̂)γ̂ = 0.

Proof The first result follows from differentiating γTγ = 1. The second has
already been mentioned in Section 5, and follows from a geometric argument.
The third follows from it by differentiating, since B(γ̂)γ̂ = 0. 2
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Theorem 1 The convergence matrix of the modified Prony algorithm is

B(γ̂)+Ḃ(γ̂)γ̂

where B(γ̂)+ is the Moore-Penrose inverse of B(γ̂).

Proof Differentiating (15) with respect to γk, and evaluating at γ̂ gives

(Ḃ(γ̂)− λ̇(γ̂)I)γ̂ + (B(γ̂)− λ(γ̂)I)Ḟ (γ̂) = 0. (18)

It was shown in Section 5 that λ(γ̂) = 0. Premultiplying (18) by γ̂T and
applying Lemma 1 and B(γ̂)γ̂ = 0, shows that λ̇(γ̂) = 0 also. So we have

Ḃ(γ̂)γ̂ +B(γ̂)Ḟ (γ̂) = 0.

But
Bγ̇ = (B + γγT )γ̇

since γT γ̇ = 0, so

Ḟ (γ̂) = −(B(γ̂) + γ̂γ̂T )−1Ḃ(γ̂)γ̂

= −(B(γ̂)+ + γ̂γ̂T )Ḃ(γ̂)γ̂

= −B(γ̂)+Ḃ(γ̂)γ̂

applying Lemma 1 again. 2

Differentiating (9) gives

ψ̈(γ) = 2B(γ) + 2Ḃ(γ)γ,

which shows that the convergence matrix measures the relative difference
between B and 1

2
ψ̈. This result is analogous to that for the Gauss-Newton

algorithm, which converges when the Fisher information matrix µ̇T µ̇ is a
good approximation to 1

2
φ̈.

The following lemma and theorem show that all linearly related Prony
parametrizations have similar convergence matrices.

Lemma 2 If B is a symmetric matrix with null space spanned by γ (γTγ =
1), then

B+ = lim
ε→0

(I − γγT )(B + εrrT )−1(I − γγT )

for any r for which rTγ 6= 0.
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Proof Let

B =
(
Z γ

)( Λ 0
0 0

)(
ZT

γT

)
be an eigen-decomposition of B, so that

(B + εrrT ) =
(
Z γ

) [( Λ 0
0 0

)
+ ε

(
ZT

γT

)
rrT

(
Z γ

)]( ZT

γT

)

=
(
Z γ

) [( Λ 0
0 0

)
+ ε

(
ZT rrTZ ZT rrTγ
γT rrTZ (γT r)2

)](
ZT

γT

)

and

(B + εrrT )−1 =
(
Z γ

) [ (Λ + εZT rrTZ + εrTZZT r)−1 ·
· ·

](
ZT

γT

)

since γT r 6= 0. Hence

(I − γγT )(B + εrrT )−1(I − γγT ) =
(
Z 0

) [ Λ−1 + o(ε) ·
· ·

](
ZT

0

)
= Z

(
Λ−1 + o(ε)

)
ZT

= B+ + o(ε).

2

Theorem 2 The eigenvalues of B+Ḃγ are invariant under linear reparam-
etrization.

Proof Let δ = U−1γ with U a nonsingular known matrix, and let Bδ and
Bγ be the Prony matrices for δ and γ respectively. Now

ψ̇δ = UT ψ̇γ,

so
Bδδ = UTBγγ = UTBγUδ

and
Bδ = UTBγU.

Differentiating again

Ḃδδ = UT (ḂγUδ)U

= UT (Ḃγγ)U.
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Hence

B+
δ Ḃδδ = lim

ε→0
(I − δ(δTδ)−1δT )(Bδ + εδδT )−1Ḃδδ

= lim
ε→0

(I − δ(δTδ)−1δT )(UTBγU + εδδT )−1UT (Ḃγγ)U

= lim
ε→0

U−1U(I − δ(δTδ)−1δT )U−1(Bγ + εU−TδδTU−1)−1ḂγγU

= lim
ε→0

U−1(I − γ(γTγ)−1γT )(Bγ + εU−TδδTU−1)−1ḂγγU

= U−1B+
γ ḂγγU,

since δTU−1γ = δTδ 6= 0, and this is similar to

B+
γ Ḃγγ.

2

7 Expectations

Calculating expectations for B and Ḃγ shows that the convergence factor
converges to zero as the variance of the yi, σ

2 → 0. (Sections 9 and 10 show
that it also converges to zero for fixed σ2 and n→∞.)

Theorem 3
IE(B(γ0)) = V0

where
V0ij = µTXi(X

TX)−1XT
j µ

and
IE(Ḃ(γ0)γ0) = 0.

Proof All expressions in this proof are to be evaluated at the true value γ0.
Using XTy = XT (y − µ), and the standard identities for rearranging terms
in matrix traces, we can write

Bij = tr Xi(X
TX)−1XT

j yyT

−tr X(XTX)−1XT
i Xj(X

TX)−1XT (y − µ)(y − µ)T

which has expectation

tr Xi(X
TX)−1XT

j (Iσ2 + µµT )− tr X(XTX)−1XT
i Xj(X

TX)−1XT Iσ2

= µTXi(X
TX)−1XT

j µ
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To do the same for Ḃγ we need an explicit expression. The simplest way is
to differentiate

ψ = yTPXy

twice with respect to γ, and to use

Ḃγ =
1

2
ψ̈ −B

This gives

(Ḃγ)ij = −yTXi(X
TX)−1XT

j X(XTX)−1XTy − symmetry term

−yTXi(X
TX)−1XTXj(X

TX)−1XTy − symmetry term

+yTX(XTX)−1XT
i X(XTX)−1XT

j X(XTX)−1XTy

+symmetry term

+yTX(XTX)−1XTXi(X
TX)−1XT

j X(XTX)−1XTy

+yTX(XTX)−1XT
i X(XTX)−1XTXj(X

TX)−1XTy

where “symmetry term” means as for the last term but with i and j inter-
changed. The theorem follows by writing XTy = XT (y − µ), applying the
trace identities, and cancelling out like terms. 2

Corollary 1 B(γ̂)+Ḃ(γ̂)γ̂ → 0 as σ2 → 0.

Proof As in the proof of Theorem 1, we use Lemma 1 to write

B(γ̂)+Ḃ(γ̂)γ̂ = (B(γ̂) + γ̂γ̂T )−1Ḃ(γ̂)γ̂. (19)

Now B(γ0) → V0, Ḃ(γ0)γ0 → 0 and γ̂ → γ0 as σ2 → 0, so (19) has the
same limit as

(B(γ0) + γ0γ
T
0 )−1Ḃ(γ0)γ0,

namely
(V0 + γ0γ

T
0 )−10 = 0.

2

Note that
V0 = µ̇T

γPXµ̇γ

since XTµ = 0 implies that

XT µ̇γ = −ẊT
γ µ

One interpretation of V0, is that it is the Fisher information matrix for γ,
conditional on the linear parameters α.
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8 Asymptotic Assumptions

Most of the remainder of this paper will deal with asymptotic results, so
we now need to make specific assumptions about our asymptotic framework.
These are basically that y and µ satisfy regularity conditions, and that µ
satisfies a differential equation like (3) and its discrete analogue (1). The pa-
rameters ξ in (3) parametrize p special solutions of the differential equation,
and the function µ can be expressed as a linear combination of these, with
coefficients α1, . . . , αp say. Let θ = (αT , ξT )T . Assume that

(a) θ ∈ Θ, where Θ is a compact subset of IRp×S with S the unit sphere in
IRq+1, which contains the true value θ0 as an interior point. The errors
εn,i = yi−µi(θ0) form a triangular array of independent deviates, which
are identically distributed with mean 0 and finite variance σ2. The time
points ti are equally spaced on the unit interval, so that ti = i/n.

(b) The function ∫ 1

0
(µ(t;θ0)− µ(t;θ))2dt

has a unique minimum in Θ at θ0.

(c) The function µ is twice continuously differentiable with respect to ξ,
and p-times continuously differentiable with respect to t. All these
derivatives are jointly continuous in t and θ.

(d) The information matrix I, defined by

Iij =
∫ 1

0

∂µ

∂θi
(t;θ0)

∂µ

∂θj
(t;θ0)dt

is positive semi-definite. Its null space has dimension one, and is
spanned by (0, ξT0 )T .

(e) The difference equation (1) converges to the differential equation (3) in
the sense that the dk converge to the bk and γ converges to ξ.

Conditions (b) to (d) are similar to Jennrich (1969). Condition (b) asserts
that µ is parametrized uniquely at θ0, while (d) guarantees that θ is estimable
up to a scale factor for ξ.

We need the following form of the law of large numbers.

Theorem 4 (Law of large numbers) If f(t;θ) is jointly continuous on
[0, 1]×Θ, then

1

n

n∑
i=1

f(ti;θ)εn,i → 0

uniformly in θ.
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Proof This result is not proved in detail because it is of a standard type.
For fixed θ, the result follows from Theorem 4.1.3 of Stout (1974) or from
Corollary 1 of Stout (1968), and from their generalizations to triangular
arrays of errors as described in Stout (1968). The proof that the result holds
uniformly in θ follows closely that of Theorem 4 of Jennrich (1969). 2

Under the above conditions, the least squares estimator θ̂ can be shown to
be strongly consistent and asymptotically normal. Proofs would be similar
to those of Jennrich (1969).

The above conditions generally hold for exponential fitting, and for ra-
tional fitting provided that the denominator polynomial pγ(t) is non-zero on
[0, 1].

9 Eigenstructure of B

Theorem 5 The least and greatest singular values of X are O(1) and O(np)
respectively.

Proof The vectors which correspond to small singular values of X are
obtained from realizations of smooth functions at the time points ti. Let
f be a p times continuously differentiable function on [0, 1] that is not a
solution of the differential equation (3). Write

‖f‖2 =
∫ 1

0
f(t)2dt

and let
z = ‖f(t)‖−1f(t)

Now let i→∞ in such a way that ti = i/n→ t. Then

(XTz)i = ‖f(t)‖−1
p+1∑
k=1

dk(ti;γ)∆kf(ti)

→ ‖f‖−1
p+1∑
k=1

bk(t; ξ)Dkf(t)

which is a nonzero constant. On the other hand, the elements of X are O(np)
through the contribution of ∆p, so the largest singular value is O(np). 2

Theorem 5 implies that the condition number of X will be large, and ap-
pears to have consequences for the numerical accuracy of (XTX)1/2, B and
µ̂. Experience with the exponential and rational fitting examples suggests,
though, that this problem is mitigated by the fact that X possesses a compact
analytic specification in terms of the Prony parameters.
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The condition number of B itself is O(1), as is shown by the following
theorem. The form of the proof given here is quite general, although it
is completed only for rational functions. Rational functions offer the least
complication because the operators Dk (see proof) are already diagonal. For
exponential fitting the proof must be prepared by a series of rather long
lemmas which diagonalize the Dk using discrete Fourier transform methods;
these were proved by Smyth (1985) and, because of their length, will appear
separately.

Theorem 6 In the rational fitting case,

1

n
B(γ̂)

a.s.→ V0

where

V0 = lim
n→∞

1

n
µ̇T
γPXµ̇γ(γ0)

Proof We need to establish that B(γ) converges almost surely, uniformly
in a neighbourhood of γ0, to a continuous function V (γ) which is equal to
V0 at γ0. It will be convenient to write

Dk = CkC
−1

for k = 1, . . . , q + 1. In the rational fitting case, the Dk are the diagonal
matrices 〈

pγ(t)−1tk−1
〉
.

Let P = (In−p 0). Substituting

XT
i = PCT

i = PCTC−TCT
i = XTDT

i

into the expression for B gives

Bij = yTDiPXD
T
j y − yTPXD

T
i DjPXy.

Expanding PX as I − PA (as in Section 3) and y as µ0 + ε gives

1

n
Bij =

1

n
(µ0+ε)TDi(I−PA)DT

j (µ0+ε)− 1

n
(µ0+ε)T (I−PA)DT

i Dj(I−PA)(µ0+ε),

and we consider the terms appearing in this expansion individually. The two
terms

1

n
εTDiD

T
j ε−

1

n
εTDT

i Djε

cancel out, since Di and Dj are diagonal matrices. Repeated application
of Theorem 4 shows that all other terms which involve ε converge to zero.
Consider for example the term

1

n
µT

0DiPAD
T
j ε = (

1

n
µT

0DiA)(
1

n
ATA)−1(

1

n
ATDT

j ε).
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The kth element of 1
n
ATDT

j ε is

1

n

n∑
i=1

tj+k−2i

pγ(ti)2
εn,i

which converges to zero almost surely by Theorem 4. The whole term con-
verges to zero almost surely, since 1

n
µT

0DiA converges to a constant vector
with elements ∫ 1

0
µo(t)

ti+k−2

pγ(t)2
dt

for k = 1, . . . , p, while 1
n
ATA converges to a constant positive definite matrix

with elements ∫ 1

0

tk+`

pγ(t)2
dt

for k, ` = 1, . . . , p. Moreover the convergence is uniform for γ in a compact
set. Similarly, the term

εTPAD
T
i DjPAε = (

1

n
εTA)(

1

n
ATA)−1(

1

n
ATDT

i DjA)(
1

n
ATA)−1(

1

n
ATε)

causes no problems, since 1
n
ATDT

i DjA converges to a constant p× p matrix,
and Theorem 4 is applied to show that each of the 1

n
ATε converge to zero.

This term is in fact of smaller order than the first.
The only terms in the expansion for 1

n
Bij which remain are

1

n
µT

0Di(I − PA)DT
j µ0 −

1

n
µT

0 (I − PA)DT
i Dj(I − PA)µ0,

and these converge to a constant, Vij say. Again the convergence is uniform
for γ in a compact set. The proof is completed by gathering the Vij into a
matrix function V (γ) of γ, and observing that V (γ0) = V0. 2

Corollary 2 With probability one, n−1B(γ̂) has a positive semi-definite limit,
the Moore-Penrose inverse of which is the asymptotic covariance matrix of
n1/2γ̂.

Corollary 3 With probability one, the zero eigenvalue of B(γ̂) is asymptot-
ically isolated with multiplicity one.

Proof n−1B(γ̂) asymptotically approximates V0, which by the assumptions
of Section 8 has one zero eigenvalue with eigenvector γ0. 2
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10 Asymptotic Stability

Theorem 7 The modified Prony iteration applied to rational fitting is almost
surely asymptotically stable.

Proof Theorem 1 gives an expression for the convergence matrix, which can
be rewritten using Lemma 1 and Corollary 3 of Theorem 6 as(

1

n
B(γ̂) + γ̂γ̂T

)−1 1

n
Ḃ(γ̂)γ̂. (20)

It is sufficient to prove that (20) converges to zero almost surely. Theorem 6
shows that 1

n
B(γ̂)+ γ̂γ̂T converges to the positive definite matrix V0 +γ0γ

T
0 .

It can also be proved that
1

n
Ḃ(γ̂)γ̂

a.s.→ 0,

although the proof is not given here because it is tedious and follows the
same form as that of Theorem 6 (it uses the expansion for Ḃ(γ)γ given in
Section 7). This establishes the proof: the matrix ratio (20) converges to zero
because its numerator converges to zero, while its denominator converges to
a positive definite matrix. 2

The asymptotic stability of the modified Prony algorithm is actually
closely related to the convergence of the usual Hessian of the sum of squares
1
n
φ̈. Consider the rational function parametrization in terms of βT = (γ2 . . . γq+1)/γ1.

We can write µ = A(β)α with

Aij =
tj−1i

1 +
∑q
k=1 βkt

k
.

The Jacobian of the transformation γ̇β is a rectangular matrix with full col-
umn rank, and null space spanned by γ. Therefore, (γ̇β(β) γ) is a square
nonsingular matrix. The, now standard, results of Jennrich (1969) can be
applied to show that

lim
n→∞

1

n
φ̈θ(θ̂)

a.s.
= lim

n→∞

2

n
µ̇θ(θ0)

T µ̇θ(θ0)

which is positive definite. So

1

n
ψ̈β(β̂) =

1

n
(φ̈β − φ̈βαφ̈−1α φ̈αβ)(α̂, β̂)

almost surely has the same limit as

2

n
µ̇β(I − PA)µ̇β(θ0) =

2

n
µ̇βPX µ̇β(θ0)
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which again is positive definite. Therefore

1

2n
ψ̈γ(γ̂) =

1

n

(
γ̇β(β̂) γ̂

)−T ( ψ̈β(β̂) 0
0 0

)(
γ̇β(β̂) γ̂

)−1
almost surely has the same limit as

2

n
µ̇TγPX µ̇(γ0) =

1

n

(
γ̇β(β0) γ0

)−T ( µ̇TβPX µ̇β(β0) 0
0 0

)(
γ̇β(β0) γ0

)−1
which is positive semi-definite, with null space spanned by γ0. This limit
may be recognized to be V0. Therefore, the fact that

1

n
ψ̈(γ̂) =

1

n
(B(γ̂) + Ḃ(γ̂)γ̂)

a.s.→ V0

can be seen to follow from the usual convergence results. (This approach was
taken by Osborne and Smyth (1986).)

11 A Numerical Experiment

The purpose of this section is to compare the modified Prony algorithm
with a good general purpose nonlinear squares procedure, namely the Leven-
berg modification of the Gauss-Newton algorithm (Fletcher, 1980). Osborne
(1975) reported some results for exponential fitting (very favorable for the
Prony algorithm), so the results here are for rational fitting. The modified
Prony algorithm was implemented as described in Section 5. The symmetric
linear system appearing in the inverse iteration sequence was solved by di-
agonal pivoting, as implemented by J. Bunch in LINPACK (Dongarra et al,
1979). The Levenberg algorithm was implemented essentially as described
by Osborne (1976), the Levenberg parameter having expansion factor 2, con-
traction factor 10 and initial value 1.

The convergence criterion used by the Levenberg algorithm was

(ssf1/2 − ssr1/2)/(1 + ssf1/2) < τ, (21)

where ssf is the actual sum of squares and ssr is the sum of squares based on
a linearization of the problem, and the tolerance τ was set to 10−7. Although
the Prony and Levenberg convergence criteria are not strictly comparable, the
Prony tolerance parameter was adjusted to 10−10 so that the two algorithms
returned estimates that were on average of the same precision.

All calculations were performed in double precision in Fortran 77 on a
Sperry Univac 1100/82 computer.
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11.1 Test Problem

Data was simulated using the mean function

µ(t) = (α1 + α2t)/(1 + β1t+ β2t
2) = (.5 + .5t)/(1− .5t+ .1t2).

Data sets were constructed to have standard deviations σ = .03, .01, .003, .001
and sample sizes n = 32, 64, 128, 256, 512. Random deviates were associated
with the means in such as way that each data set comprised every second
point of the next larger data set. This was done so that sample sizes could
be compared along a common sequence of random deviates.

Ten replicates were generated for each of the four distributions: the nor-
mal, student’s t on 3 d.f. (infinite third moments), lognormal (skew) and
Pareto’s distribution with k = 1 and α = 3 (skew and infinite third mo-
ments). Random deviates were generated by inverting the distribution func-
tions, i.e.

ε = σF−1(U)

with U a pseudo random number generated by the NAG subroutine G05CAF
(Numerical Algorithms Group, 1983) with seed equal to 1984. The first
10,000 values generated by G05CAF were ignored (most were used for expo-
nential fitting simulations), while the next 5120 were used for the simulations
reported here.

In order to make an objective choice, the true parameter values themselves
were used as starting values. These were quite far from the least squares
estimates for small n and large σ, less so for large n and small σ, as can be
seen from Table 3.

11.2 Results

As it turned out, the convergence results were similar for all four distri-
butions; for example, Table 1 gives the iteration counts for the modified
Prony algorithm for the first replicate. It appears that the convergence rates
achieved by the algorithms are little affected by skewness or by the third and
higher moments of the error distribution (although the actual least squares
estimates returned will be affected). So only the results for the normal dis-
tribution are reported below.

Iteration counts for the normal simulations are given in Table 2. As
expected from the form of the convergence matrices, and also from the prox-
imity of the starting values to the final estimates, both algorithms converged
more rapidly for large n and small σ. (See Smyth (1987) and Kass and Smyth
(1989) for a discussion of the convergence matrix for the Gauss-Newton algo-
rithm.) The pattern for the Levenberg algorithm was obscured somewhat by
its careful convergence criterion (21), which caused it to produce relatively
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more precise estimates when the sum of squares was small. This is discussed
further below. In most cases the Prony algorithm required slightly fewer it-
erations than the Levenberg, although both algorithms were finished within
6 iterations most of the time even for n = 32 and σ = .03. Computer time
was not strictly recorded, but the two algorithms took similar amounts of
elapsed time. Table 3 gives the means and standard deviations of β̂1 and β̂2.
For two samples with n = 32 and σ = .03, Prony converged to a stationary
value which was not the least squares estimate; except for these, the pro-
grams returned effectively identical estimates. The two samples for which
Prony failed gave rise to final Prony matrices B(γ̂) which were indefinite,
while all other cases gave positive semi-definite matrices.

Two changes to the Levenberg algorithm, specifically tuning it to this
problem, allowed it to converge rather more rapidly, as shown in Table 4.
The first was to set the Levenberg parameter to zero, so that the algorithm
reduced to the unmodified Gauss-Newton algorithm. The second was to
remove the constant from the denominator of the convergence criterion (21).
This constant is a standard safety device in general purpose programs, but
when ssf is small it causes the program to seek a small absolute rather
than relative different between ssf 1/2 and ssr1/2. Without the constant,
the number of iterations required decreases consistently with n, as expected.
Although the precision of estimation accepted by the new criterion is no
longer equivalent to that of Prony, the differences between the parameter
estimates returned are very small.

Experimentation showed that both Prony and Gauss-Newton algorithms
were sensitive to the starting values for small n and large σ. This is in
contrast with results for exponential fitting, for which the modified Prony
algorithm is remarkably robust with respect to the starting value.

We conclude that, for this rational fitting problem, the modified Prony
algorithm is intermediate in performance between a general purpose Leven-
berg algorithm and a Gauss-Newton type algorithm specially tuned to the
problem.

Simulations for exponential fitting will be given in a separate paper, which
will focus on the special problems of exponential fitting. Curiously, the mod-
ified Prony algorithm actually appears to perform better for exponential
fitting than it does for rational fitting, despite the well known fact that other
algorithms find exponential fitting very much more difficult (as did the Lev-
enberg algorithm in our simulations).
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Table 1: Iteration counts for the modified Prony algorithm for one replicate
of four distributions.

σ n Normal Student Log-normal Pareto
.030 32 5 5 5 4

64 4 5 4 4
128 4 4 4 4
256 5 4 4 4
512 4 4 4 4

.010 32 4 4 3 3
64 4 4 3 3

128 3 3 3 3
256 3 3 3 3
512 3 3 3 3

.003 32 3 3 3 3
64 3 3 3 3

128 2 2 2 2
256 2 2 2 2
512 3 3 2 2

.001 32 2 2 2 2
64 2 2 2 2

128 2 2 2 2
256 2 2 2 2
512 2 2 2 2
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Table 2: Median and maximum iteration counts for normal simulations. Re-
sults for the Prony algorithm are given above those for the Levenberg algo-
rithm.

n\σ .030 .010 .003 .001

32 5 17 4 6 3 3 2 3
6 10 5 7 5 6 5 5

64 5 12 4 5 3 3 2 2
6 8 5.5 6 5 5 5 5

128 6 7 4 4 2.5 3 2 3
6 7 5 6 5 5 5 5

256 4.5 6 3 4 2 3 2 2
6 6 5 6 5 5 5 5

512 4 5 3 3 3 3 2 2
6 6 5 6 5 5 5 5
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Table 3: Means and standard deviations, over 10 replicates, of the least
squares estimates of β1 and β2. True values are β1 = −.5 and β2 = .1.

n\σ .03 .01 .003 .001

32 −.2910(.24) −.4474(.055) −.4853(.015) −.4952(.005)
−0.238(.14) .0692(.034) .0914(.095) .0972(.003)

64 −.5042(.21) −.5025(.066) −.5099(.020) −.5003(.007)
.1033(.12) .1017(.038) .1006(.011) .1002(.004)

128 −.4694(.14) −.4918(.046) −.4977(.013) −.4993(.005)
.0816(.08) .0950(.027) .0986(.008) .9954(.003)

256 −.4979(.13) −.5002(.041) −.5002(.012) −.5001(.004)
.0966(.08) .0994(.025) .0999(.007) .1000(.002)

512 −.5180(.16) −.5080(.051) −.5026(0.15) −.5009(.005)
.1097(.09) .1044(.030) .1014(.009) .1005(.003)
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Table 4: Median and maximum iteration counts for unmodified Gauss-
Newton with a simplified convergence criterion.

n\σ .030 .010 .003 .001

32 4 5 3 3 3 3 2 3
64 3 5 3 4 3 3 2.5 3

128 3 5 3 3 2.5 3 2 3
256 3 3 2 3 2 3 2 2
512 3 3 2 3 2 3 2 2
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