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Abstract

One of the most basic and commonly used numerical computations in probability and
statistics is to evaluate the random deviate corresponding to any given tail probability for
a given probability distribution. The deviate corresponding to a given probability is called
the quantile. Quantiles usually need to be computed by numerical approximation, and the
need often arises to compute quantiles for probability distributions for which reliable code
is not readily available. The purpose of this article is to point out a simple but elegant
result that applies to all continuous unimodal distributions. Newton’s method for finding
the quantiles of a continuous unimodal distribution is always monotonically convergent when
started from the mode of the distribution. This provides a simple, accurate and numerically
reliable method of computing quantiles for any continuous unimodal distribution, given that
the cumulative distribution and probability density functions can be evaluated accurately.

The monotonic Newton iteration has been implemented in the qinvgauss function of the
R package statmod to compute quantiles of inverse Gaussian distributions. The resulting
function proves to be faster, more accurate and more reliable than existing functions for the
same purpose, even without sophisticated optimization.
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1 Introduction

One of the most basic and commonly used numerical computations in probability and statistics is
to evaluate the random deviate corresponding to any given tail probability for a given probability
distribution. In mathematical terms, the left tail probability as a function of the deviate is the
cumulative distribution function (cdf). The deviate as a function of the tail probability is the
inverse cdf or quantile function.

∗With revisions 11 July 2014
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Only a few very simple distributions, like the uniform or exponential distributions, have
quantile functions that are available as close-form expressions. For most other distributions the
quantile function must be computed by some numerical approximation. Considerable effort has
been devoted over the years to the development of high-quality numerical approximations and
algorithms for computing the cdf and quantile functions for commonly used distributions. The
base version of the R language for example includes cdf and quantile functions for a number of
popular distributions, including uniform, gamma, beta, normal, Student’s t, chi-squared and F,
as part of the stats package maintained by the R core team. The need often arises however to
compute tail probabilities and quantiles for other distributions for which such well developed
algorithms are not yet available.

The inverse Gaussian (IG) distribution (Tweedie, 1957) is an example of a well known distri-
bution for which fully reliable numerical algorithms have not been available. The IG distribution
is widely used in reliability and survival analysis (Whitmore, 1975; Chhikara and Folks, 1977;
Bardsley, 1980; Chhikara, 1989). It is more generally used for modeling non-negative positively
skewed data because of its connections to exponential families and generalized linear models
(Seshadri, 1993; Blough and others, 1999).

In general, the cdf of a distribution is usually somewhat easier to compute than the inverse
cdf. For the IGD, for example, the cdf is actually available in closed form whereas the inverse
cdf is not. The cdf is usually inverted by solving the nonlinear equation defined by the cdf and
the desired tail probability. Two strategies are popular. One is to solve for the quantile using a
general-purpose equation solver, such as the uniroot function in R. This is the approach taken
by the qinvgauss function of the STAR package (Pouzat, 2012). This approach is reliable but
computationally slow and requires left and right bounds for the quantile to be pre-specified.
The other popular approach is to use Newton’s method to solve the equation after applying an
initial approximation. This approach was taken by one of the current authors when developing
a qinvgauss function for S-PLUS (Smyth and Bagshaw, 1998). It is also the approach taken by
the qinvGauss function of the SuppDists package (Wheeler, 2013). This approach is potentially
fast and accurate but suffers from lack of convergence.

The purpose of this article is to point out a simple but elegant result that applies to all
continuous unimodal distributions. Newton’s method for finding the quantiles of a continuous
unimodal distribution is always monotonically convergent when started from the mode of the
distribution. This provides a simple, accurate and numerically reliable method of computing
quantiles for any continuous unimodal distribution, given that the cumulative distribution and
probability density functions can be evaluated accurately. By combining Newton’s method
with some analytic information about the shape of the distribution, this method combines the
reliability of the bounded solver method with the speed and precision of Newton’s method. This
method also avoids the need for an initial approximation. Newton’s method typically converges
quickly, even when the desired quantile is in the extreme tail of the distribution and far from
the mode.

The monotonic convergence method has been implemented to find quantiles of the inverse
Gaussian distribution in the qinvgauss function of the R package statmod (Smyth, 2014).
Despite the simplicity of the method, the function proves to be faster and more accurate than
existing functions for the same task. The same idea has wide application and it likely to prove
useful for other distributions.

Section 2 of this article reviews some properties of unimodal distributions, including the
IG. Section 3 develops a Newton iteration for the quantiles, showing that it must always con-
verge. Section 4 and Section 5 describe code implementations for the IG distribution. Section 6
compares the speed and accuracy of the new code to that of existing IG functions in other
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Figure 1: Probability density functions of inverse Gaussian distributions. The left panel shows
densities for different λ with µ = 1. The mode is always between 0 and 1. The distribution
becomes more skew as λ decreases. The right panel shows densities for different µ for λ = 1.
The densities are all unimodal with mode between 0 and µ.

packages.

2 Unimodal Distributions

Let f(x) be a continuous probability density function (pdf) with support on (a, b), where a and
b may be infinite. We say the distribution is unimodal if f(x) has a unique maximum value at
the mode x = m and there are no other local maxima. This implies that f(x) is non-decreasing
for x ≤ m and non-increasing for x ≥ m.

Let F (x) be the cdf corresponding to f(x). If the distribution is unimodal, then it follows
from F ′(x) = f(x) that F (x) has a point of inflexion at m. In that case, F is convex on (a,m)
and concave on (m, b).

Many continuous distributions are unimodal. Here we concentrate on the inverse Gaussian
distribution IG(µ,φ), with pdf

f(x;µ, φ) =
(
2πx3φ

)−1/2
exp

{
−(x− µ)2

2φxµ2

}
for x > 0, µ > 0 and φ > 0. The support of the distribution is the positive reals, so a = 0 and
b =∞. The mean of the distribution is E(x) = µ and the variance is var(x) = φµ3. Motivated
by generalized linear model theory (McCullagh and Nelder, 1989), we call φ the dispersion
parameter. Another popular parametrization of the IG distribution uses λ = 1/φ, which we call
the shape parameter.

Note that the mean µ can be viewed as a scaling parameter. If X is distributed as IG(µ,φ),
then X/µ is also IG with mean 1 and dispersion φµ. Note also that φµ is the squared coefficient
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of variation for the IG distribution, and write κ = 3φµ/2. The IG distribution is unimodal
(Johnson and Kotz, 1970, p. 142) with mode at

µ

{(
1 + κ2

)1/2
− κ

}
.

Note that the second factor in the mode is strictly between 0 and 1, showing that the mode
is always greater than zero but less than µ. Figure 1 shows the pdf of the IG distribution for
various choices of µ and λ.

3 Newton’s method for quantiles

Consider the problem of finding the value x = x∞ that solves g(x) = 0, where g is a continuously
differential function. Newton’s method starts with an initial estimate x0, and approximates g(x)
by the tangent line at x0 to obtain a new approximation x1. Continuing in this way, the (n+1)th
estimate of the root is obtained as

xn+1 = xn −
g(xn)

g′(xn)
,

where g′ is the derivative of g.
Newton’s method is quadratically convergent if started sufficiently close to the root. It is

hard however to characterize how close the starting value needs to be to achieve convergence,
and in general there is no guarantee that iteration will not diverge into a region where the
function g is undefined.

There is one important case for which convergence can be guaranteed. If x0 > x∞ and g is
convex in the interval (x∞, x0), then the steps −g(xn)/g′(xn) will all be negative and successive
estimates xn will converge to x∞ from above. Similarly, if x0 < x∞ and g is concave in (x∞, x0),
then the steps −g(xn)/g′(xn) will all be positive and successive estimates xn will converge to
x∞ from below. We call this monotonic convergence because the successive estimates form a
monotonic bounded sequence.

To compute the quantiles of a distribution it is necessary to solve g(q) = F (q)− p for q. The
solution q = F−1(p) is the quantile of the distribution corresponding to tail probability p. If we
define F−1(0) = a and F−1(1) = b, then the quantile q is uniquely defined for any unimodal
distribution and for any 0 ≤ p ≤ 1. If 0 < p < 1, Newton’s method for finding q yields the
iteration

qn+1 = qn +
p− F (qn)

f(qn)
. (1)

The point of this article is to observe that Newton’s method for the quantile is always
monotonically convergent, for any unimodal distribution, if we choose the initial estimate q0 to
be the mode of the distribution. If the mode is above the desired quantile q, then F is convex on
(q,m). If the mode is below the desired quantile q, then F is concave on (m, q). In either case,
these conditions guarantee that Newton’s method will converge monotonically to the required
quantile.

Figure 2 illustrates the monotonic Newton iteration for finding quantiles of the IG distri-
bution. Newton’s iterations are shown for computing the p = 0.01 and p = 0.99 quantiles for
different mean and dispersion values. As the figure shows, the iteration descends to the 0.01
quantile and ascends to the 0.99 quantile.
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Figure 2: Monotonic Newton’s method for quantiles of inverse Gaussian distributions. The cdf
has a point of inflexion, marked by a red dot, at the mode of the distribution. Blue lines show
the progress of the iteration for the 0.01 or 0.99 quantiles. Since the cdf is convex to the left
of the mode and concave to the right, starting the iteration at the point of inflexion ensures
convergence to the required quantiles.
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Sometimes it is desirable to compute tail probabilities on the log-scale, so as to avoid floating
point underflow or to avoid subtractive cancelation errors when the probability is compared to
1. If log p is supplied instead of p, and F (q) can be accurately computed on the log-scale, then
the (p−F (qn))/f(qn) step of the Newton iteration can be computed on the log-scale to improve
floating point accuracy. Write dn = exp | log p− logF (qn)|. If log-probabilities are supplied, the
Newton iteration can be redefined as

qn+1 = qn + exp {log p+ log1p(dn)− log f(qn)}

when p > F (qn), or

qn+1 = qn + exp {logF (qn) + log1p(−dn)− log f(qn)}

when p < F (qn). Here, the function log1p(x) evaluates log(1+x) using a Taylor series expansion
to avoid subtractive cancelation in the neighborhood x = 0. Such a function is available in the
standard distribution of R. The log-density log f(qn) is computed by dinvgauss with log=TRUE

and logF (qn) is computed by pinvgauss with log.p=TRUE.

4 Example code for the inverse Gaussian distribution

The following is minimal R code to implement the monotonic Newton iteration to compute
quantiles of the IG distribution. For simplicity, this code does not do any argument checking.
The code assumes that x and q values are positive and the probabilities are strictly between
0 and 1. The first argument is assumed to be a vector, whereas the parameters µ and φ are
scalars.

dinvgauss <- function(x, mu=1, phi=1)

# Probability density function of inverse Gaussian distribution

{

d <- (-log(phi)-log(2*pi)-3*log(x))/2-((x-mu)/mu)^2/(2*phi*x)

exp(d)

}

pinvgauss <- function(q, mu=1, phi=1)

# Cumulative distribution function of inverse Gaussian distribution

{

q <- q/mu

phi <- phi*mu

pq <- sqrt(phi*q)

pnorm((q-1)/pq) + exp( 2/phi + pnorm(-(q+1)/pq,log.p=TRUE) )

}

qinvgauss <- function(p, mu=1, phi=1, maxit=50L, tol=1e-5)

# Quantiles of the inverse Gaussian distribution

{

n <- length(p)

phi <- phi*mu

# Start iteration at mode (with mu=1)

kappa <- 1.5*phi

q <- rep_len(sqrt(1+kappa^2)-kappa,n)
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# Newton iteration

iter <- 0

i <- rep_len(TRUE,n)

while(any(i)) {

iter <- iter+1

if(iter > maxit) {

warning("max iterations exceeded")

break

}

dq <- (p[i] - pinvgauss(q[i], phi=phi)) / dinvgauss(q[i], phi=phi)

q[i] <- q[i] + dq

i[i] <- (abs(dq) > tol)

}

q*mu

}

5 Implementation in the statmod package

The previous section gave minimal example code. Complete full-featured functions dinvgauss,
pinvgauss, qinvgauss and rinvgauss are implemented in the statmod package (Smyth, 2014).
The statmod functions allow parameter vectors and include careful checking for boundary values,
invalid or NA input arguments. They also provide the ability to work with log-probabilities. In
general, they obey all the conventions obeyed by the probability functions in the stats package.

Variability can be specified either by way of a dispersion (φ) or shape (λ) parameter:

> args(qinvgauss)

function (p, mean = 1, shape = NULL, dispersion = 1, lower.tail = TRUE, log.p = FALSE,

maxit = 50L, tol = 1e-05, trace = FALSE)

Boundary or impossible arguments are detected:

> qinvgauss(c(0,0.5,1,2,NA))

[1] 0.0000000 0.6758413 Inf NA NA

as are invalid parameter arguments

> qinvgauss(0.5, mean=c(0,1,2))

[1] NA 0.6758413 1.0284598

Attributes of input arguments are also preserved on output:

> p

X1 X2

A 0.6001382 0.3434530

B 0.4918840 0.4987219

> qinvgauss(p)

X1 X2

A 0.8485613 0.4759428

B 0.6637441 0.6739203
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Table 1: Speed and accuracy of qinvgauss() functions in different packages. Second column
gives elapsed time to compute a million quantiles. Third and fourth columns are median and
maximum absolute errors.

Package Time (sec) Median Error Max Error

Section 4 code 6.42 1.267e-13 3.901e-11
statmod 6.77 1.267e-13 3.901e-11
SuppDists 14.73 2.774e-10 1.029e-08
predfinitepop 195.44 8.388e-08 1.179e-06
STAR 326.51 1.166e-08 6.650e-06

6 Comparison with existing inverse Gaussian functions

Functions for quantiles of IG distributions can also be found in the SuppDists (Wheeler, 2013),
STAR (Pouzat, 2012) and predfinitepop (Ovando and others, 2014) packages. Here we compare
the speed and accuracy of the statmod qinvgauss function with the corresponding functions in
the other packages.

Speed was determined by generating p as a vector of a million random uniform deviates, and
running the qinvgauss or qinvGauss functions on p with mean and dispersion both equal to
one. Precision was determined by comparing the probability vector p with the values obtained
by passing the probabilities through qinvgauss and pinvgauss. qinvgauss and pinvgauss are
inverse functions, so the final probabilities should be equal in principle to the original values.
The error is measured by the absolute deviations between the original and processed probability
vectors. Table 1 shows running times in seconds, and the median and maximum errors. The
statmod qinvgauss function runs 2–3 times faster and produces three extra decimal places of
accuracy than the nearest competitor, which is SuppDists. The speed improvement is achieved
despite the fact that the SuppDists functions are coded in the C programming language whereas
statmod is pure R. Coding the statmod function in C would presumably increase the speed
advantage further. Precision is given for the default settings of statmod::qinvgauss; even
greater accuracy could be achieved if desired by decreasing the tol argument. The simple code
shown in Section 4 is very slightly faster than the statmod function because it doesn’t do any
argument checking. Timings here are for a Windows laptop with a 2.2GHz Intel i7 processor
running 64-bit R 3.1.0.

Another critical consideration is reliability. The SuppDists function qinvGauss fails for some
parameter values for reasons that are probably to do with lack of convergence. For example:

> qinvGauss(0.00013,1,3)

Error in qinvGauss(0.00013, 1, 3) :

Iteration limit exceeded in NewtonRoot()

By contrast, the statmod function qinvgauss runs successfully for all parameter values because
divergence of the algorithm is impossible.

> qinvgauss(0.00013,1,3)

[1] 0.1503976
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7 Conclusions

Newton’s method is a fast and accurate method of computing quantiles if convergence of the
iteration can be guaranteed. Such a guarantee is available for unimodal distributions if the
starting value is chosen to be the mode of the distribution. In such a case, Newton’s method
converges to the required quantile without any divergence or overstepping.

This method is applicable to any continuous distribution that can be transformed to be
unimodal. For example, the beta and F distributions are not themselves unimodal for all
parameter values, but become unimodal after logit and log transformations respectively.

It might be surprising that we recommend starting the iteration from the same value regard-
less of the quantile required. Intuitively, a starting value that is closer to the required quantile
might have been expected to be better. However using an initial approximation runs the risk of
divergence, and convergence of Newton’s method from the mode is so rapid that the potential
advantage of a closer initial approximation is minimized.

The monotonic Newton iteration has been implemented in the statmod package to compute
quantiles of IG distributions. The resulting function is faster, more accurate and more reliable
than existing functions, even without sophisticated optimization.
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