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Abstract

This paper considers REML (residual or restricted maximum likelihood) es-
timation for heteroscedastic linear models. An explicit algorithm is given for
REML-scoring which yields the REML estimates together with their standard
errors and likelihood values. The algorithm includes a Levenberg-Marquardt re-
stricted step modification which ensures that the REML-likelihood increases at
each iteration. This paper shows how the complete computation, including the
REML information matrix, may be carried out in O(n) operations.

Keywords: Residual maximum likelihood; Restricted maximum likelihood; Method
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1 Introduction

This paper considers REML (residual or restricted maximum likelihood) estimation for
heteroscedastic linear models. We suppose that the responses y1, . . . , yn are indepen-
dent and that yi ∼ N(µi, σ

2
i /wi) with

µi = xT
i β

and
g(σ2

i ) = zT
i γ

where the wi are prior weights and g() is a known monotonic differentiable function.
Here xi is a vector of covariates relevant for predicting the mean, zi is a vector of
covariates relevant for predicting the variance and β and γ are vectors of regression
coefficients. The model assumes that the variance of each yi is not, given the covariates,
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functionally dependent on the mean µi. Responses which do show a marked mean-
variance relationship can often be transformed to a suitable scale using a Box-Cox
transformation (Box & Cox, 1964) after which analysis can proceed as in this paper,
or else may be treated by more general variance modeling methods such as those of
Davidian & Carroll (1987) or Smyth (1989).

Heteroscedastic regression models have an extensive literature going back to Park
(1966), Rutemiller & Bowers (1968) and Harvey (1976). Aitkin (1987) considered a
log-linear model for the variances and developed GLIM code for maximum likelihood
estimation. Heteroscedastic regression has recently gained popularity in industrial
statistics for analyzing unreplicated experiments, experiments for robust design and
the analysis of process data. See for example Box & Meyer (1986a), Box & Meyer
(1986b), Carroll & Ruppert (1988), Nair & Pregibon (1988), Nelder & Lee (1991),
Chapter 10 of Myers & Montgomery (1995), Engel & Huele (1996), Bergman & Hynén
(1997), Lee & Nelder (1998), Nelder & Lee (1998), Huele (1998) and Huele & Engel
(1998).

REML is a method of estimating the variance parameters, in this case γ, using
a marginal likelihood function in which the mean parameters do not appear. This is
achieved by considering the likelihood not of the yi but of the set of all zero-mean con-
trasts of the yi. REML estimation was introduced by Patterson & Thompson (1971) for
normal random effects models. An extensive discussion was given by Harville (1977).
There are various reasons for preferring REML over maximum likelihood for estimation
of the variances. The most frequently quoted reasons are that the estimators are less
biased and that an appropriate degree of freedom correction is produced in standard
cases (Tunnicliffe Wilson, 1989). Other reasons are that REML is related to Bayesian
marginal inference (Harville, 1974) and that REML is less sensitive to influential obser-
vations with high leverage in the mean model (Verbyla, 1993). Perhaps the strongest
reason is that the REML score vector for the variance coefficients is unbiased, providing
consistent estimators in situations where maximum likelihood estimators are inconsis-
tent. A systematic study of REML for the log-linear variance model was undertaken
by Verbyla (1993). Lee & Nelder (1998), Huele & Engel (1998), Smyth & Verbyla
(1999), Huele et al. (2000) and Smyth et al. (2001) discuss how the REML estimator
from Verbyla (1993) can be obtained by repeated fitting of generalized linear models,
although this approach cannot be used to obtain standard errors.

The model considered in this paper is a slight generalization of that considered in
Verbyla (1993), where g was assumed to be the exponential function. Verbyla (1993)
did not give an algorithm for computing the estimates. Other authors, such as Carroll
& Ruppert (1988), Nelder & Lee (1998), Huele (1998) and Huele & Engel (1998),
have reported convergence problems trying to compute ML or REML estimators for
heteroscedastic regression. This paper gives an explicit algorithm for REML-scoring
which yields the REML estimates together with their standard errors and likelihood
values. The algorithm includes a Levenberg-Marquardt restricted step modification
(Fletcher, 1987, Section 5.2; Thisted, 1988, Section 4.5.3.3) in order to ensure that
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the REML-likelihood increases at each iteration. The algorithm is based on prototype
Levenberg-Marquardt algorithms which are established in the numerical literature but
which are not well known in the statistics literature. In particular the use of restricted
step modifications for Fisher scoring has been very rare, one example being Osborne
(1987). The implementation here includes new suggestions for the stopping criterion
and the initialization of the damping parameter which utilize the Fisher scoring context.

Several authors, such as Cook & Weisberg (1983), Lee & Nelder (1998), Huele &
Engel (1998) and Smyth & Verbyla (1999), have avoided the exact REML likelihood
calculations because of the computational burden involved in computing the REML
information matrix for large data sets. In each case they used a diagonal matrix to
approximate a dense full-rank n × n matrix which appears in the REML information
matrix. The effect of using such approximations has been examined in detail by Smyth
et al. (2001). This paper gives a new decomposition for the correct REML information
matrix which enables it to be computed in O(n) operations thereby making an ap-
proximation unnecessary for most problems. This result allows the complete modified
REML-scoring computation to be carried out in O(n) operations using O(n) storage.

Section 2 reviews maximum likelihood estimation for heteroscedastic regression and
Section 3 sets out the basic REML calculations. Section 4 derives a decomposition for
the REML information which allows O(n) computation. An iterative algorithm for
REML is outlined in Section 5. Section 6 considers a data example from industrial
statistics.

2 Maximum Likelihood Estimation

Before considering REML estimation it is useful to set out the maximum likelihood
calculations for comparison. This section summarizes maximum likelihood estimation
for parameter vectors β and γ. The results are a special case of results in Nelder &
Pregibon (1987) and Smyth (1989).

The score vector for β is

Uβ = XT Σ−1
m (y −Xβ)

and the information matrix is
Iβ = XT Σ−1

m X

where Σm = vary = diag(σ2
i /wi) and X is the n × p design matrix with ith row xT

i .
The score vector and information matrix for γ are

Uγ = ZT GΣ−1
d (d− σ2)

and
Iγ = ZT W−1

d Z

where d is the n-vector of di = wi(yi − µi)
2, σ2 = E(d) is the n-vector of σ2

i , Σd =
vard = diag(2σ4

i ), G = diag{1/ġ(σ2
i )}, ġ is the derivative of g, Wd = G2Σ−1

d and Z
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is the n × q design matrix with ith row zT
i . The two parameter vectors β and γ are

orthogonal. The method of scoring for computing the maximum likelihood estimates
yields

βk+1 =
(
XT Σ−1

m X
)−1

XT Σ−1
m zm

with zm = y − µ + Xβ and

γk+1 =
(
ZT WdZ

)−1
ZT W−1

d zd

with zd = G−1(d−σ2)+Zγ. Here k indicates the kth iterate and the right-hand sides
are evaluated at βk and γk. The scoring iteration for β has the form of weighted linear
regression while the scoring iteration of γ is that for a gamma generalized linear model
with responses di, link g() and dispersion equal to 2.

3 Residual Maximum Likelihood

We now consider REML estimation for the heteroscedastic model. This section gener-
alizes the results of Verbyla (1993) to an arbitrary link function for the variance. The
REML estimator of γ is obtained by maximizing the marginal log-likelihood

`R(y; γ) = `(y; β̂(γ), γ)− 1

2
log |XT Σ−1

m X|

= −1

2

(
log |Σm|+ yT Py + log |XT Σ−1

m X|
)

where ` is the ordinary log-likelihood, β̂(γ) is the conditional maximum likelihood
estimator for β for given fixed γ and

P = Σ−1
m − Σ−1

m X(XT Σ−1
m X)−1XT Σ−1

m .

The REML score vector for γ is

UR = ZT GΣ−1
d (d− σ2∗)

where σ2∗ is the n-vector of (1− hii)σ
2
i and the hii are the diagonal elements of

H = Σ−1/2
m X(XT Σ−1

m X)−1XT Σ−1/2
m ,

the hat matrix in the weighted regression for β. The information matrix is

IR = Z∗T V Z∗

where Z∗ = Σ
−1/2
d GZ and V is the n× n matrix with diagonal elements (1− hii)

2 and
off-diagonal elements h2

ij, the hij being the elements of H. Here V is the covariance
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matrix of the squared residuals, Σ−1
m d, where d is evaluated at β = β̂(γ). The REML

scoring iteration for γ is
γk+1 = γk + I−1

R UR (1)

with IR and UR computed at γk and β̂(γ). This differs from the ordinary scoring
iteration for γ in that σ2∗ replaces σ2 in the score vector and the matrix V is inserted
in the information matrix. The dense matrix V means that the REML scoring iteration
cannot be written as an iteratively-reweighted least squares calculation and is therefore
best treated as a general nonlinear iteration.

4 Computation of the Information Matrix

The REML information matrix involves the matrix V , which is a dense n × n matrix
and is generally of full rank. Forming the matrix V explicitly therefore produces an
O(n2) computation which is likely to be prohibitive for medium to large size data sets.
Indeed several authors have avoided computing V by approximating it with a diagonal
matrix (Cook & Weisberg, 1983; Huele & Engel, 1998; Smyth & Verbyla, 1999).

Although the off-diagonal elements of V are often of smaller order than the diago-
nal elements, there are O(n2) such elements so the effect on the information matrix of
ignoring them is not generally negligible. Suppose that hij = O(n−1) and that n−1IR

has a positive definite limit, both of which are true under standard regularity condi-
tions. Write V2 = diag V . Even though the off-diagonal elements of V are O(n−2),
n−1IR − n−1Z∗T V2Z

∗ does not converge to zero. Ignoring the off-diagonal elements of
V produces relative errors in the elements of the IR which do not tend to zero as n
increases. Such errors will impact on the computed standard errors for γ̂ and will slow
down convergence of the scoring algorithm for computing γ̂.

We show here that the correct REML information matrix can be computed in O(n)
operations for p and q constant, making diagonal approximation to V unnecessary for
most problems. This is achieved by representing V as a diagonal matrix plus a matrix
of low rank. The matrix V can be written

V = diag(1− 2hii) + H2

where H2 represents the matrix with elements h2
ij. Recall that H is the “hat matrix”,

the matrix for the orthogonal projection operator onto the column space of Σ−1/2
m X.

Therefore H has p eigenvalues 1, where p is the rank of X, and n − p eigenvalues 0.
The nonzero eigenvalues of H correspond to eigenvectors which span the column space
of Σ−1/2

m X. We show now that H2 has rank at most p(p + 1)/2. Let q1, . . . ,qp be an
orthonormal basis for the range space of H. Any basis is sufficient, for example we
can let the qj be the columns of the Q-matrix from the QR-decomposition of Σ−1/2

m X.
Then the qj are eigenvectors for H with eigenvalues equal to 1, so we can write

H =
p∑

a=1

qaq
T
a
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i.e.,

hij =
p∑

a=1

qa,iqa,j

where qa,i, i = 1, . . . , n, are the elements of qa. Squaring this expression gives

h2
ij =

p∑
a=1

q2
a,iq

2
a,j + 2

∑
1≤a<b≤p

qa,iqa,jqb,iqb,j

or in matrix terms

H2 =
p∑

j=1

sjs
T
j + 2

p(p−1)/2∑
k=1

tkt
T
k

where each sj is a vector of the squares, sj,i = q2
j,i, and each tk is a vector of products,

tk,i = qa,iqb,i for a < b. This represents H2 as the sum of p + p(p − 1)/2 = p(p + 1)/2
rank-one matrices. It follows that H2 is of rank at most p(p+1)/2, less if n < p(p+1)/2
or if the sj and tk are not all linearly independent. The tk can be computed for example
from the pseudo code

k = 0
for i = 1 to p− 1 {
for j = i + 1 to p {

k = k + 1
tk = qi.qj

}}

where qi.qj represents component-wise vector multiplication.
The low rank representation for H2 allows the information matrix IR to be com-

puted efficiently. Let S be the n × p matrix with columns sj and let T be the
n×p(p−1)/2 matrix with columns tk. Let B be the p(p+1)/2×q matrix (S, 2T )T Z∗.
Forming B requires nqp(p + 1)/2 multiplications. Then

IR = Z∗T V Z∗ = Z∗T diag(1− 2hii)Z
∗ + BT B (2)

The first term on the right-hand side requires O(nq2) flops while the second requires
O(pq2). The extra computation involved in computing the correct REML information
matrix rather than using a diagonal approximation for V is dominated by the formation
of B.

Standard results for matrix multiplications (Golub & Van Loan, 1996) show that
β̂(γ) can be computed for fixed γ in O(np2) flops. Similarly each update (1) for γ
would require O(nq2) flops given β̂(γ) if V was approximated by a diagonal matrix.
We can conclude that approximating V by a diagonal matrix produces an approximate
REML scoring iteration requiring O(np2) + O(nq2) flops. REML scoring using the
correct matrix V and implemented as in (2) requires O(np2q) + O(nq2) flops. The
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important result is that the computational burden, both in terms of flops and in terms
of storage requirements, grows only linearly with the size of the data set for fixed p
and q. This allows the REML information matrix to be computed for large data sets.
In the author’s implementation using the S-Plus language on a PC running Windows
98, evaluation of IR involving explicit formation of the matrix V is limited by storage
requirements to data sets with n no more than about 500. By comparison, evaluation
of IR using (2) causes no problems with n = 100, 000 and p and q both small and
requires only a few seconds of computer time.

5 Implementation of REML Scoring

Huele et al. (2000) have pointed out that the REML score equations UR = 0 can be
solved by repeatedly fitting a gamma generalized linear model with responses di/(1−
hii), link g() and prior weights 1 − hii, where the di and the hii are updated at each
iteration from the updated γ. Lee & Nelder (1998) describe a similar strategy, although
without specifying the prior weights 1 − hii. Alternatively one could use responses
di + hiiφi and prior weights unity, with again dii and hii updated at each iteration
(Huele & Engel, 1998; Huele et al., 2000). Both of these strategies have the REML
estimates for γ as a stationary value. On the other hand, neither generalized linear
model gives correct standard errors for γ (the unweighted model being worse that the
weighted in this respect), although these may be computed from IR at convergence of
the iteration.

An even more serious problem is that these iterative strategies often experience
difficulties with convergence. One problem is that Lee & Nelder (1998) and Huele
& Engel (1998) appear to iterate the gamma generalized linear model to convergence
before updating β̂(γ), so that γ is updated several times before the di and hii are
recomputed. This is incorrect in that the di and hii are functions of γ in the REML
score vector and these quantities must be updated with γ in order to solve the cor-
rect estimating equation. Iterating the generalized linear model to convergence also
introduces an unnecessary inner iteration which can itself produce convergence prob-
lems. An appropriate implementation is to perform a single iteration of the gamma
generalized linear model between updates of β̂(γ), di and hii. The iteration is then a
pseudo-Newton iteration for maximizing the REML likelihood.

REML scoring is a nonlinear iteration and cannot be guaranteed to converge with-
out some sort of step restriction to ensure an increase in the likelihood at each it-
eration. Empirical experience with REML suggests that REML scoring often con-
verges more slowly than the maximum likelihood algorithms discussed in Section 2
or Smyth (1989). The remainder of this section describes REML scoring with a sim-
ple Levenberg-Marquardt restricted step strategy. Let A be an approximation to the
REML information matrix IR. The algorithm is based on the principle that λ > 0 can
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always be chosen sufficiently large so that

γk+1 = γk + (A + λI)−1UR (3)

is an ascent step for the REML likelihood, where I is the q × q identity matrix. The
parameter λ introduces Levenberg-Marquardt damping and has the effect of reducing
the size of the γ-step and rotating it slightly in the direction of UR. The damping
parameter is increased as required during the iteration to prevent the REML likelihood
from decreasing. If the scoring step (3) decreases the REML likelihood at first try, then
λ is decreased by a pre-determined factor for the next iteration. If A is chosen to be
positive definite, then the algorithm is a generalization of the well-known Levenberg-
Marquardt algorithm for nonlinear least squares, for which strong global convergence
results exist (Fletcher, 1987, Sections 5.1, 5.2 and 6.1). The algorithm given here can
therefore be expected to be globally convergent to a solution of the REML equations
subject to fairly standard regularity conditions, most importantly that the eigenvalues
of A are bounded away from zero. In practice, the algorithm converges unless rounding
errors in floating point arithmetic make the desired level of precision impossible to
achieve. In the latter case the iteration is terminated when λ becomes too large.

Initialization

1. Initialize di as the squared residuals from regression of y on X with weights
wi. Compute the leverages hii from this regression. (The leverages are usually
best obtained from hii =

∑p
j=1 q2

ij where the qij are the elements of Q from the
QR-decomposition of diag(wi)X.)

2. Compute γ0 as the regression coefficient vector from the linear regression of
g−1{di/(1− hii)} on Z with weights 1− hii, and initialize σ2

i = g−1(zT
i γ0). (Note

that γ0 is defined even if some hii = 1 because any such point receives zero
weight.)

3. Regress y on X with weights wi/σ
2
i . Store the squared residuals as di and the

leverages as hii. The QR-decomposition of the matrix Σ−1/2
m X will be produced

as a by-product of this regression — store the upper triangular factor as R.

4. Compute the REML deviance (minus twice the log-likelihood) as

D =
n∑

i=1

{
widi/σ

2
i + log(σ2

i /wi) + log(2π)
}

+ 2 log |R|.

(Note that |R| is the product of the diagonal elements of R as R is a triangular
matrix.)

5. Initialize λ. I have used λ = trA/q, which is a simple crude estimator of the
smallest eigenvalue of A.
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Scoring Iteration

6. Using the Choleski decomposition of A + λI or otherwise, solve (A + λI)δ = UR

for δ where A is an approximation to IR. Compute γk+1 = γk + δ and update
the σ2

i .

7. Regress y on X with weights wi/σ
2
i . Update the di, the hii and R and compute

the REML deviance D as in 4.

8. If D has decreased, then decrease λ by a suitable decrease factor and go on to
the next step. If D has increased or has remained constant then increase λ by an
increase factor and go back to 6. (I use increase factor 2 and decrease factor 10.)

9. If δT UR < ε then accept convergence and go to 11. (I use ε = 10−5 by default.)

10. If λ > m 1016 where m is the maximum diagonal element of A then accept
that further increase of the likelihood is limited by rounding error and go to 11.
Otherwise return to 6.

Wrap-up

11. Compute standard errors for γ as the square-root diagonal elements of IR.

The use of the convergence criterion δT UR in step 9 above is justified by the fact
that this quantity converges to UT

RIRUR, which has the form of a score test statistic for
testing hypotheses about γ. The criterion is equal to zero at γ̂ and is otherwise positive.
Equally importantly, it is a well-scaled quantity for γ near γ̂ so that comparison with
a constant cut-off value is meaningful.

In principle any reasonable approximation A can be used for IR. The algorithm
above represents REML scoring if A = IR. Other reasonable choices for A are A =
Z∗T V1Z

∗ or A = Z∗T V2Z
∗ where Vj = diag (1 − hii)

j. The last approximation has
been used by Cook & Weisberg (1983), Verbyla (1993) and Smyth & Verbyla (1999).
Any diagonal approximation such as V1 or V2 has the effect of decreasing slightly
the computational burden at each iteration compared with REML scoring but at the
likely cost of incurring extra iterations. Smyth et al. (2001) argue that of the two
approximations, V1 often provides a better approximation to IR than does V2. An S-
Plus function implementing REML scoring is available from www.statsci.org/∼gks/s/.
An R function is in the statmod package available from CRAN (www.r-project.org).

6 Example: Welding Strength

The data give the results of an off-line screening experiment for factors affecting weld-
ing quality conducted by the National Railway Corporation of Japan (Taguchi & Wu,
1980). The response variable is the observed tensile strength of the weld, one of sev-
eral quality characteristics measured. There are nine two-level factors [A–I, following
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Bergman & Hynén (1997)] in an unreplicated experiment of 16 runs. The data have
been considered previously by Box & Meyer (1986a), Box & Meyer (1986b), Bergman
& Hynén (1997), Nelder & Lee (1998) and Huele & Engel (1998). The limited amount
of available data in relation to the number of explanatory factors means that reliable
computation of REML estimates and standard errors requires special care.

We consider here three mean-dispersion models for which results are given Nelder
& Lee (1998) and Huele & Engel (1998). The first is the model with all 9 main effects
in the mean model and factors C, H and I in the dispersion model. Here C indicates
welded material, H welding method and I preheating. The mean model is an ordinary
additive linear model with 9 factors and the dispersion model is the log-linear model

log σ2 = γ0 + γCc + γHh + γIi (4)

Each indicator variable is coded as 1 for the high level of the factor and 0 for the
low. Nelder & Lee (1998) give estimates and standard errors in their Table 3, and
conclude from the standard errors for the dispersion model that factor H does not
have a significant effect on the variance. Huele & Engel (1998) estimate the same
model using a different fitting algorithm and get similar results for the mean model
but different estimates and standard errors for the dispersion model. Both Nelder & Lee
(1998) and Huele & Engel (1998) give standard errors for γ̂ based on approximations
to IR. Unfortunately, computing the actual REML information matrix for this model
shows that the dispersion model is singular. With all main effects in the mean model,
the matrix V has three zero eigenvalues and is of rank 13 rather than rank 16. The
design matrix Z for the 3-factor dispersion model has a range space with overlaps the
null space of V , so that IR has one zero eigenvalue. This has the effect that the γj

are not identifiable and do not have unique REML estimators. The values for the γ̂j

at convergence are an accident of the fitting algorithm, which explains why Nelder &
Lee (1998) and Huele & Engel (1998) get different results. The standard errors given
for the γ̂j in the two papers are entirely illusionary, as the “correct” standard errors
obtained from IR are actually infinite for all four dispersion parameters. For this model
no diagonal approximation to V can produce an adequate approximation for IR.

The second model considered replaces the saturated main-effect model for the mean
with

µ = β0 + βBb + βCc

where B indicates period of drying. The dispersion model is the same as before (4).
This was the final model found by Bergman & Hynén (1997) using a graphical method
of analysis. Carroll & Ruppert (1988) reported convergence problems with maximum
likelihood estimation for this data and a similar model. Nelder & Lee (1998) found
divergence when attempting to compute either the maximum likelihood or the REML
estimators for this model. Only Huele & Engel (1998) have previously succeeded in
computing REML estimates for this model. The algorithm given in Section 4 converges
to the REML estimates without the need to increase λ at any point. With A = IR the
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Table 1: Estimates and standard errors for the welding-strength data model (4).

Estimates Standard errors
γ̂j REML V1 V2

Intercept -3.15891 0.83131 0.81881 0.94816
C -2.73544 0.82248 0.81048 0.96280
H -0.08603 0.83509 0.81048 0.96280
I 3.33259 0.82502 0.81048 0.96280

algorithm requires 9 iterations to converge with ε = 10−5. With A derived from V ≈ V1

the algorithm requires 11 iterations to reach the same convergence criterion and with A
derived from V2 it requires 16 iterations. The Levenberg-Marquardt damping strategy
is not actually needed for convergence in this case, but it also does not cost anything
as the unmodified REML scoring algorithm requires the same number of iterations to
reach the same precision.

The final estimates and standard errors are given in Table 1. The table gives the
REML estimates for the dispersion model together with standard errors obtained from
(i) the REML information matrix, (ii) approximating V with V1 and (ii) approximating
(iii) approximating V with V2. The standard errors based on V1 are slight under-
estimates while those base on V2 are about 16% too high. The final value for minus
twice the REML log-likelihood is D = 14.00547. The REML estimates and standard
errors agree with those given by Huele & Engel (1998) to 3 significant figures. Huele
& Engel (1998) have presumably computed the full REML information at convergence
of the iteration using explicit evaluation of V , as recommended in Section 3 of Huele
et al. (2000).

Finally we consider the model

µ = β0 + βBb + βCc + βIi (5)

and
log σ2 = γ0 + γCc + γIi (6)

for which both Nelder & Lee (1998) and Huele & Engel (1998) give estimates. Here
B indicates period of drying. Results are given in Table 2. Again the standard errors
based on V1 are slight under-estimates while those based on V2 are over-estimates.
Minus twice the REML log-likelihood is 14.14072. Nelder & Lee (1998) and Huele
& Engel (1998) both give correct estimates to two or three decimal places. Neither
Nelder & Lee (1998) nor Huele & Engel (1998) state explicitly how they have computed
standard errors, but comparison with Table 2 shows that Nelder & Lee (1998) are using
the approximation based on V1 while Huele & Engel (1998) are using the correct REML
information matrix.
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Table 2: Estimates and standard errors for the welding-strength data model (6).

Estimates Standard errors
γ̂j REML V1 V2

Intercept -3.06385 0.71992 0.71216 0.83372
C -3.03748 0.83885 0.82624 0.96440
I 2.90415 0.84022 0.82598 0.96321
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