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Abstract. We investigate the modified Prony algorithm of Osborne and Smyth
(1991, 1993) applied to the estimation of the frequency of oscillation of a sinu-
soidal signal with added white noise, and compare it with the algorithms usually
associated with the names of Prony and Pisarenko. We show that the Pisarenko
algorithm returns O(N−

1
2 ) consistent estimates, and that the modified Prony al-

gorithm returns the least squares estimates which are O(N−
3
2 ) consistent. The

transfer function parameter estimates that are returned by these algorithms con-
verge to the true values at the same rate as the frequency estimates in each case. A
concise expressions for the asymptotic covariance matrix of these estimates is given
in the simplest case. Small sample properties, starting values and the importance
of correctly specifying the number of sinusoids, are investigated in a simulation
study.
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1. Introduction
One of the recurring problems of time series analysis has proved to be the es-

timation of the frequencies present in a sinusoidal signal corrupted by the addition
of white noise. This problem has spawned a variety of procedures arising from the
various ways in which such a process may be represented. Suppose we observe a
sequence {y(n)}, n = 1, . . . , N , where

y(n) =

p∑
j=1

ρj cos(ωjn+ φj) + ε(n), (1)

{ε(n)} is a sequence of uncorrelated random variables with zero mean and vari-
ance σ2, and {ρj} and {ωj} are constants. Assuming p is known and {φj}
non-random, the maximum likelihood estimates for ωj may be obtained by non-
linear least squares procedures from (1) or from the equivalent parametrisation
y(n) =

∑p
j=1 αj cosωjn+βj sinωjn+ε(n) (Hannan 1971, Walker 1971), or asymp-

totically from the location of maxima of the periodogram (Bloomfield 1976, p.18).
These procedures include an optimisation step which requires initial estimates of
the frequencies, and return estimated frequencies which are O(N−

3
2 ) consistent,

while the estimates of the linear parameters (ρ, or α, β) are O(N−
1
2 ) consistent

(Hannan 1973).
Other methods make use of the recurrence relation formulation of (1), derived

in, for example, Feller (1971, p.93) or Chan, Lavoie and Plant (1981):

2p∑
j=0

c(j)y(n− j) =

2p∑
j=0

c(j)ε(n− j), n = 2p+ 1, . . . , N (2)

where c(0) = c(2p) = 1, c(j) = c(2p− j) for j = 0, . . . , 2p. The relation (2) is for-
mally equivalent to saying that a linear combination of p sinusoidal signals (or 2p
pure imaginary complex conjugate signals) can be modelled as an ARMA(2p,2p)
process. Since the coefficients of both parts of the transfer function are identical,
so that the transfer function reduces to 1, this might be thought to be vacuous,
but a variety of procedures have been evolved based on estimating the parameters
c = {c(0), . . . , c(2p)}T . The frequency estimates ω̂j are then found as phase com-

ponents of the zeroes of the polynomial ĉ(z) =
∑2p
j=0 ĉ(j)z

j , the estimate of the
transfer function of the recurrence relation (2).

In the following section we develop the Prony and Pisarenko algorithms, based
on (2), as constrained optimisation procedures for the same objective function,

and prove that the parameter estimates derived from the Pisarenko are O(N−
1
2 )

consistent. In section 3 we use the representations developed previously to derive
an alternative algorithm for estimating c and show that the frequency estimates
found in this way are the maximum likelihood estimates. In section 4 we prove
that the c estimates are O(N−

3
2 ) consistent and derive a concise expression for

the asymptotic covariance matrix in the simplest case. We display some results of
simulation experiments in section 5, and defer proofs of theorems until section 6.
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2. Algorithms of Pisarenko and Prony.
In order to present the Prony and Pisarenko procedures in a concise manner

we introduce the following matrix notations for the set of equations (2). Let y
and e be the vectors {y(1), . . . , y(N)}T and {ε(1), . . . , ε(N)}T , and define C and
Y to be the N × (N − 2p) and (N − 2p)× (2p+ 1) matrices

C =



c(2p) 0 . . . . . . 0
...

. . .
. . . . . . 0

c(0) c(2p) 0
...

0
. . .

. . .
. . .

... 0 c(0) c(2p)

... . . .
. . .

. . .
...

0 . . . . . . 0 c(0)


,

Y =

 y(2p+ 1) . . . y(1)
...

. . .
...

y(N) . . . y(N − 2p)

 ,

and let E be a matrix of the same form as Y with ε(j) replacing y(j) throughout.
Then we can write (2) in either of the two equivalent forms

Yc = Ec (3)

or
yTC = eTC . (4)

Write R for the (2p+ 1)× (2p+ 1) matrix of expected squares and products

R = E{(YTY)/(N − 2p)} ,

and observe that E(YTE) = (N − 2p)σ2I2p+1. In the signal processing literature,
R is called the autocovariance matrix of y, and this relates to an alternative
model for the data in which the phases φj are uniformly distributed on [0, 2π).
If we premultiply both sides of (3) by YT and take expectations we find that
(N − 2p)Rc = (N − 2p)σ2I2p+1c, hence (R − σ2I)c = 0. That is, (R − σ2I) has
an eigenvalue at 0, whose eigenvector is the parameter vector c. Estimating R
by some appropriate estimators of the autocovariances, finding σ2 as the smallest
eigenvalue and c as its eigenvector is the algorithm of Pisarenko. The procedure
concludes by finding the phase components of the zeroes of the polynomial c(z).

The right hand sides of (2), (3) and (4) represent a noise sequence with a
complicated correlation structure. The fact that c(0) = 1 enables a third form of
the estimating equations to be written,

y∗ = −Y∗c∗ + f , (5)
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where Y∗ is the matrix consisting of the last 2p columns of Y, c∗ is the vector

{c(1), . . . , c(2p)}, and y∗ is the first column of Y, so that Y = [y∗
...Y∗], and f = Ec.

Ignoring the correlation structure of f and solving (5) as if it were an ordinary least
squares problem (minimising fT f) gives

ĉ∗ = −(YT
∗Y∗)

−1YT
∗ y

which is one member of a class of algorithms known by the name of Prony. There
are a number of variants of this algorithm, which attempt to reduce the ineffi-
ciency that arises from ignoring the correlation structure of the f sequence, and to
incorporate information about the symmetric structure of the c parameters (see
Chan, Lavoie and Plant 1981, Marple 1987).

Expressed as an optimisation problem, Pisarenko’s algorithm finds c by min-
imising cT R̂c subject to cT c = 1 (Golub and van Loan 1983 Theorem 8.1–2),

where R̂ is some estimate of R. With the particular choice of R̂ = YTY/(N−2p),
the alternative constraint c(0) = c(2p) = 1 leads to Prony’s algorithm, as follows.
Letting λ be a Lagrange multiplier, the normal equations are YTYc = λe1 where
e1 is the first coordinate vector. Putting c(0) = 1, the last 2p rows give

YT
∗ y∗ + YT

∗Y∗c∗ = 0

that is
c∗ = −(YT

∗Y∗)
−1YT

∗ y

as above. Kahn, Mackisack, Osborne and Smyth (1991) show that cT c = 1 is the
only scaling of this optimisation problem which leads to consistent estimates for c.

The error in the estimates of the elements of ĉ in the Pisarenko algorithm is of
the same order of magnitude as the error in the estimates of the autocovariances,
so that none of the parameter estimates can be consistent to order greater than
N−

1
2 . To see this, note that the estimators ĉ and σ̂2 satisfy ψ(R̂; ĉ, σ̂2) = 0 where

ψ(R̂; c, σ2)T = [cT (R̂− σ2I) (1− cT c)/2]. The asymptotic covariance matrix of
ĉ and σ̂2 is [E(ψ′)]−1var(ψ)[E(ψ′)]−1 where ψ′ = [∂ψ/∂c, ∂ψ/∂σ2] and ψ and ψ′

are evaluated at R̂ and the true c and σ2. Since E(ψ′) is a constant nonsingular

matrix, the covariance matrix of ĉ and σ̂2 is proportional to var(ψ) = var(R̂c).
This suggests that an improved algorithm in respect of convergence properties
will need to in some way avoid explicitly estimating the autocovariances, and in
particular will need to use a matrix that is of smaller order than R̂ in the direction
of c.

3. The Modified Prony Algorithm
We derive an algorithm which includes specific treatment of the dependence

in the error sequence and which avoids the inefficiency of the Pisarenko algorithm,
starting from the representation (4) for the data, and following the arguments of
Osborne and Smyth (1991, 1993). The maximum likelihood estimates for {ρj},
{φj} and {ωj}, or equivalently {αj}, {βj} and {ωj}, minimise the sum of squares
S = (y−µµµ)T (y−µµµ), where µµµ = (µ(1), . . . , µ(N))T is the vector of signals µ(n) =



4∑p
j=1 αj cosωjn+ βj sinωjn. We can write µµµ = A(ωωω)γγγ where A(ωωω) is the N × 2p

matrix

A(ωωω) =

 cosω11 sinω11 . . . cosωp1 sinωp1
...

...
...

...
cosω1N sinω1N . . . cosωpN sinωpN


and γγγ = (α1, β1, . . . , αp, βp)

T ; then S is minimised for fixed ωωω by γ̂γγ(ωωω) = (ATA)−1ATy.
Substituting γ̂γγ(ωωω) into S gives the reduced sum of squares

S(ωωω) = S
(
ωωω, γ̂γγ(ωωω)

)
= yT (I−A(ATA)−1AT )y .

Now I−A(ATA)−1AT is the orthogonal projection onto the null space of A, and
since CTA = 0 and C and A have full column rank, this projection can be written
also as C(CTC)−1CT . We have shown that

S(ωωω) = S(c) = yTC(CTC)−1CTy ,

and minimising S(c) gives the maximum likelihood estimator of c (in the case
when {ε(n)} are independent and identically distributed as N (0, σ2)).

The frequency estimates derived from ĉ(z) are the maximum likelihood es-
timates (Osborne and Smyth 1993 Theorem 1), and have the asymptotic distri-
bution given in, for example, Hannan (1971, Theorem 4′); for p = 1, that is, for

y(n) = ρ cos(ωn + φ) + ε(n), N−
3
2 (ω̂ − ω) → N (0, 2πf(ω)(24/ρ2)) where f(ω) is

the noise process spectral density at the true frequency.
The derivative of the objective function S(c) is found (using results in, for

example, Dwyer and McPhail 1948 pp. 517–534) to be

ds

dc
= 2B(c)c

= 2yT
∂C

∂c
(CTC)−1CTy − 2yTC(CTC)−1

∂CT

∂c
C(CTC)−1CTy

= 2

[ 2p∑
j=0

c(j)Bij

]
i=0,...,2p

.

Here, ∂C/∂c is a three-dimensional array, so ∂C/∂c(i) and ∂C/∂c(j) are matrices,
and

Bij = yT
∂C

∂c(i)
(CTC)−1

∂CT

∂c(j)
y − yTC(CTC)−1

∂CT

∂c(i)

∂C

∂c(j)
(CTC)−1CTy (7)

(Osborne and Smyth 1991) so as in that paper the necessary condition for a mini-
mum of the least squares problem is B(c)c = λc, where λ is a Lagrange multiplier
for the scaling constraint. This is a nonlinear eigenproblem, and the algorithm
which solves it is called here the modified Prony algorithm. It starts by forming
the matrix B using an initial estimate of c, and proceeds by inverse iteration to
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locate the c which is the eigenvector corresponding to the zero eigenvalue of B
(see Osborne and Smyth 1991 for details).

4. Asymptotic variances of the Prony parameter estimators
In this section we seek an explicit expression for the covariance matrix of the

transfer function parameters ĉ. The c are of interest independently of ωωω as the
parameters in the transfer function and because the estimated signal values µ̂µµ can
be obtained directly from them without rooting the polynomial ĉ(z) (Osborne and
Smyth 1993). There is also reason to expect that an expression for the asymptotic
covariance of ĉ may remain valid for smaller N and lower signal-to-noise ratio
than the corresponding expression for ω̂ωω. This is because, for small N or low
signal-to-noise ratios, the estimated polynomial may yield roots which are partly
or entirely real. When the roots are real, the corresponding frequency estimates
are meaningless, but the signal obtained directly from ĉ is still meaningful as
estimating the solution of a homogeneous differential equation, as described in
Osborne and Smyth (1991).

Estimation of the covariance matrix of ĉ is based on the matrix B. For the case
of real exponential signals considered by Osborne and Smyth (1991 Theorem 3),
E(B(c)) cannot be expressed more explicitly than as a matrix whose terms are
products like the first term of Bij in (7); they prove (Osborne and Smyth 1993
Theorem 2) that N−1B(ĉ) converges almost surely to a positive semi-definite
limit, when the asymptotic sequence is taken in the sense of progressively finer
dissections of the same finite interval. They also show that

E{ ∂2S

∂c∂cT
−B(c)} = 0.

The methods used can be adapted to the sinusoidal case to prove the following
lemma.

Lemma. Let Ω = limN→∞
1
N3E{B(c)}. Then

lim
N→∞

1

N3
B(c) = Ω

and lim
N→∞

1

N3

(
∂2S

∂c∂cT
−B(c)

)
= 0 .

Theorem 1. Let ĉ minimize S(c) subject to cT c = 1. Then Ω+ is the asymptotic

covariance matrix of σ−1N−
3
2 ĉ.

Theorem 2. If p = 1 then Ω = (12 sin2 ω)−1(R− σ2I).

Theorem 2 gives an expression for Ω in the case of a single sinusoid, p = 1
in (1), where it is possible to evaluate it explicitly in terms of the autocovariance
matrix

R =
ρ2

2

 1 + σ2 cosω cos 2ω
cosω 1 + σ2 cosω
cos 2ω cosω 1 + σ2

 .
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Proofs of both theorems are given in Section 6. We conjecture that the relation-
ship between Ω and R is true for larger p, but the algebraic devices that enable
Theorem 2 to be derived are not obviously generalised.

For p = 1 the matrix (2/ρ2)(R − σ2I) has eigenvectors (1,−2 cosω, 1)T ,
(1, 0,−1)T and (cosω, 1, cosω)T with eigenvalues 0, 2 sin2 ω and 2 cos2 ω + 1 re-
spectively. This allows us to obtain

Ω+ =
24a2

ρ2(2b2 + 1)2

 (8b2 + 1)/(4a2) b (8b2 − 1)/(4a2)
b 1 b

(8b2 − 1)/(4a2) b (8b2 − 1)/(4a2)


where a = sinω and b = cosω. Alternatively, if we prefer to rescale ĉ so that c(3) =

1, then we can find the asymptotic covariance matrix of σ−1N−
3
2 {ĉ(1)/ĉ(3), ĉ(2)/ĉ(3)}T

as DTΩ+D where

DT =

(
1/c(3) 0 −c(1)/c(3)2

0 1/c(3) −c(2)/c(3)2

)
and D is evaluated at the asymptotic values c = (1,−2 cosω, 1)T /

√
2 + 4 cos2ω.

After some algebra this gives

DTΩ+D =
48(2 cos2ω + 1)

ρ2

(
1 − cosω

− cosω 1

)
.

For p > 1 the algebra is too complicated to write down concisely the explicit form
of Ω, but we conjecture that it remains of the form k(R − σ2I2p+1) for larger p,
with some constant k depending on ω and p.

5. Simulation Experiments.
There are several issues to be considered in connection with the performance

of the algorithm on finite data sets: one would like to know how large N needs
to be for the asymptotic rate of convergence to become evident; whether the
algorithm is sensitive to choice of starting values and if so whether a method
for selecting starting values can be recommended; how the algorithm behaves if
the assumption that the number of signals p is known correctly is violated; and
whether the conjecture about the form of limN→∞N−3B(ĉ) seems to be supported
by computational results, for p > 1. An exhaustive investigation of these questions
is beyond the scope of this paper, which has a primarily theoretical intention. We
present a selection of simulation results which we believe indicate the important
features of the algorithm’s small-sample performance.

Simulated data sequences were constructed with one and two sinusoids,

y(n) = 20 cos(0.34n+ φ) + ε(n)(A)

y(n) = 20 cos(0.34n+ φ1) + 20 cos(1.3n+ φ2) + ε(n)(B)

The ε(n) were generated as an independent, standard Gaussian sequence using
algorithm AS70 of Odeh and Evans (1974). The modified Prony algorithm was
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implemented as described in Osborne and Smyth (1991, 1993), and all calculations
were performed in double precision arithmetic.

Estimation of the frequency (ω = 0.34) and the transfer function parameter
(c(1) = −2 cos(ω) = −1.885509) in (A) was very satisfactory even with N as small
as 16, when the true frequency was used as the starting value for the algorithm and
with the variance of the noise sequence σ2 = 1. The mean and standard deviation
from 100 replications of the simulation with N = 16 were µω̂ = 0.3405 and σω̂ =
0.0037 respectively. When the variance of the noise sequence was increased to σ2 =
100, the estimates deteriorated rapidly for N = 16 (µω̂ = 0.3233, σω̂ = 0.1056)
although they were still satisfactory for N = 32 (µω̂ = 0.349, σω̂ = 0.071). The
values predicted by the asymptotics for the three σω̂ given above are 0.0054, 0.054
and 0.019 respectively. For N ≥ 64 the agreement between predicted and actual
standard deviations was within sampling error.

The importance of an adequate starting value for the usual Maximum Likeli-
hood frequency estimation procedures has been demonstrated by Rice and Rosen-
blatt (1988), and the same need can be seen in the case of the modified Prony
algorithm. For a single short data sequence and a single long one (N = 32 and
N = 512), we examined empirically how far away from the true value a starting
value could be chosen which would still lead to convergence. We ran the algo-
rithm repeatedly on this sequence for starting values in an interval around the
true value, separated by steps of 0.0006. For N = 32, convergence occurred reli-
ably for starting values between 0.2664 and 0.4254; outside this range, convergence
still occurred for isolated sets of values as far away from the true value as 0.2490
and 0.4548, and then beyond this region convergence apparently never occurred.
As N increases, the starting value needs to be closer to the true value, and for
N = 512, the reliable range of starting values was between 0.3354 and 0.3450, and
hardly any values outside this region led to convergence. The absence of a clear-
cut boundary to the domain of attraction of the maximum likelihood solution is
to be expected for such a non-linear algorithm.

There are several algorithms in common use for frequency estimation which do
not require starting values (unmodified Prony, Pisarenko) or which are much less
sensitive to their choice (autoregressive spectral estimation), and it would clearly
be an advantage if such an algorithm could provide an adequate starting value
for the modified Prony algorithm. However, since we know that the approximate
likelihood has maxima which are O(N−1) apart (Rice and Rosenblatt 1988), we
probably need a method better than that of Prony or Pisarenko which has es-
timation errors O(N−

1
2 ). We may expect that these will be unreliable, whereas

the autoregressive method which has estimation error O(N−
5
4 ) (Mackisack and

Poskitt 1989) is a more promising candidate. The autoregressive method has the
added advantage that it does not require prior input of the number of sinusoidal
frequencies in the signal for a sensible estimate to emerge, whereas the Pisarenko
and Prony methods depend critically on correct model specification.

A study of 20 input sequences of type (A) with N = 32 confirmed that the
(inconsistent) Prony method was not useful, particularly at high noise levels, giv-
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ing estimates consistently far from the domain of attraction of the maximum of the
likelihood surface. In the same circumstances the (consistent) Pisarenko algorithm
returned an acceptable starting value about half the time, while the autoregressive
procedure was always close to the true value and well within the domain of attrac-
tion established earlier. The autoregressive method was implemented using Burg’s
algorithm and choosing the order by the AIC criterion, as described in Mackisack
and Poskitt (1989).

When p > 1, care must be taken not only to have starting values close to
the true frequencies, but also to ensure that the value of p is correct. When
these conditions are satisfied the modified Prony algorithm again performs well,
as expected, but if p is mis-specified the results may be misleading, even when the
true frequency values are given as starting values. Fitting a model with p = 1 to
an input sequence of type (B) starting from one of the true frequency values, the
algorithm performs as if there were only that one frequency in the signal. With
N = 32 for example the frequency estimate agrees with that found using p = 1 to
about two decimal places. Adding the extra frequency in the sequence biases the
estimates slightly. If an input sequence of type (A) is used and p = 2 is fitted, as
long as a starting value is given which is very close to the true (single) frequency,
the algorithm will estimate that frequency, agreeing for N = 32 to about four
decimal places with the estimate obtained for the same sequence using p = 1.
Sometimes, the algorithm returns a second frequency quite close to the second
starting value given (although on other occasions there is no relation between the
two); if one actually believed that there ought to be a second signal component,
this can give a misleading impression that the algorithm has in fact located such a
frequency. There is clearly a need for a test to be carried out, such as for example
that of Quinn (1986), to establish the correct value for p before proceeding with
the frequency estimation.

We finally estimated the correlation matrix of the parameters c in model
(B) to see whether the conjecture of the asymptotic form seems to be supported.
DT (R − σ2I)+D can be computed for p = 2 and the values from (B), following
the same arguments as were used for the p = 1 case. Computing the correlation
matrix derived from this removes the influence of the unknown constant, and gives

1.0000 −0.9531 0.9251 −0.8705
−0.9531 1.0000 −0.9726 0.9251
0.9251 −0.9726 1.0000 −0.9531
−0.8705 0.9251 −0.9531 1.0000


compared with the observed correlation matrix of the estimated parameters, which
is similar in pattern and approximate relative size of its elements:

1.0000 −0.9428 0.8348 −0.7326
−0.9428 1.0000 −0.9467 0.8178
0.8348 −0.9467 1.0000 −0.9297
−0.7326 0.8178 −0.9297 1.0000

 .
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Scaling DT (R− σ2I)+D by dividing by the largest diagonal element gives


0.3781 −0.5861 0.5688 −0.3292
−0.5861 1.0000 −0.9726 0.5688
0.5688 −0.9726 1.0000 −0.5861
−0.3292 0.5688 −0.5861 0.3781


which can be compared with the similarly scaled version of the covariance matrix
of the sample:


0.2607 −0.4814 0.4090 −0.1861
−0.4814 1.0000 −0.9085 0.4069
0.4090 −0.9085 0.9207 −0.4439
−0.1861 0.4069 −0.4439 0.2476


from which we see that the relative sizes of the variances of the parameter esti-
mates also are within reasonable distance of each other (using an approximate χ2

distribution for the simulation variance estimates, the coefficient of variation is
about 14%). This all seems consistent with the idea that the covariance matrix
is of the form conjectured, with some constant which we have not been able to
identify.

6. Proofs
Proof of Theorem 1. This theorem is an extension of standard least squares
results, which show that the second derivative matrix of the sum of squares, S, ap-
proximates the inverse covariance matrix of the estimates. Introducing a Lagrange
multiplier, the least squares estimators minimize

F (γγγ, c, λ) = S(γγγ, c) + λ(cT c− 1) ,

where γγγ is as in Section 3. Applying a Taylor series expansion to the derivative of
F , using D for the derivative operator, leads to

0 = DF (γ̂γγ, ĉ, λ̂) ≈ DF (γγγ, c, λ) +D2F (γγγ, c, λ)

 γ̂γγ − γγγ
ĉ− c
λ̂− λ


and  γ̂γγ − γγγ

ĉ− c
λ̂− λ

 ≈ −D2F (γγγ, c, λ)−1DF (γγγ, c, λ) . (11)

Now

DF =

 −(Dγγγµ)T (y − µµµ)
−(Dcµ)T (y − µµµ) + λc

cT c− 1


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where Dγγγ and Dc are partial derivative operators, and since cT (Dcµµµ)T = 0 we see
that λ = 0 at the solution. So

D2F =

D2
γγγγγγT S D2

γγγcT S 0

D2
cγγγT S D2

ccT S c

0 cT 0

 .

The eigenvectors of D2F are (0, cT , 1), (0, cT ,−1) and (vTj , 0), j = 1, . . . , 2p,

where vj are the eigenvectors of D2S orthogonal to c, and the first two eigenvalues
are 1 and −1, so

(D2F )−1 =

(
(D2S)+ g

gT 0

)
,

where gT = (0, c) Therefore (11) becomes γ̂γγ − γγγ
ĉ− c

0

 =

(
(D2S)+DS

0

)

or equivalently

(
N−

1
2 (γ̂γγ − γγγ)

N−
3
2 (ĉ− c)

)
≈
(
N−1D2

γγγγγγT S N−2D2
γγγcT S

N−2D2
cγγγT S N−3D2

ccT S

)+(
N−

1
2DγγγS

N−
3
2DcS

)
.

Now N−
1
2DγγγS and N−

3
2DcS have expectation zero and an asymptotic covariance

matrix, Hσ2 say, that has null space spanned by (000T , cT )T . Also the matrix of
standardized second derivatives of S can be shown to converge to H by the law of
large numbers. Therefore asymptotically,

var

(
N−

1
2 (γ̂γγ − γγγ)

N−
3
2 (ĉ− c)

)
= H+σ2.

To complete the proof we note that

DccT S(c, γ̂γγ(c)) = D2
ccT S −D2

cγγγT S(D2
γγγγγγT S)−1D2

γγγcT

∣∣
γγγ=γ̂γγ(c)

(Richards, 1961), which is the Moore-Penrose inverse of the trailing (p+1)×(p+1)
submatrix of D2S. This shows that (limN→∞N−3D2

ccT S(c, γ̂γγ(c)))+ is the trailing
(p+1)×(p+1) submatrix of H+, but from the Lemma this is Ω+ and the Theorem
is proved.

Proof of Theorem 2. E(yyT ) has as its (r, c) element σ2δrc + ρ2

2 cos(r − c)ω +
ρ2

2 cos{(r + c)ω + 2φ} = σ2δrc + W1,rc + W2,rc, where δrc is the Kronecker delta
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function. We shall write E(yyT )− σ2I = W1 + W2. To evaluate the expectation
of (7), use (4) and trace identities to write

E(Bij) = E

[
tr

{
∂C

∂c(i)
(CTC)−1

∂CT

∂c(j)
yyT − ∂C

∂c(j)
(CTC)−1CTeeTC(CTC)−1

∂CT

∂c(i)

}]
= tr

{
∂C

∂c(i)
(CTC)−1

∂CT

∂c(j)
(W1 + W2)

}
= tr

{
∂C

∂c(i)
(CTC)−1

∂CT

∂c(j)

ρ2

4
(ξ1ξ

∗
1 + η1η

∗
1 + ξ2ξ

∗
2 + η2η

∗
2)

}
(9)

where ξ∗1 = (1, e−iω, . . . , e−i(N−3)ω), η = ξ and ∗ denotes conjugate transpose,

so that W1 = ρ2

2 (ξ1ξ
∗
1 + η1η

∗
1). The vectors ξ2 and η2 are defined similarly to

represent the decomposition of W2.
We need only consider the first and third terms of (9),

Ak =
ρ

2
ξ∗k

∂C

∂c(i)
(CTC)−1

∂CT

∂c(j)

ρ

2
ξk

for k = 1, 2, since the analysis of the terms involving ηk is identical except for
signs. The key to the proof is a triangular decomposition of (CTC) as LLLLLLT where
LLL is lower triangular. For p = 1, c = (1,−2 cosω, 1)T and hence we can show that

LLL =
1

sinω


sinω 0
sin 2ω sinω

...
...

. . .

sin(N − 2)ω · · · · · · sinω

+
a matrix of

negligible terms.

The terms which are ignored in LLL arise from the fact that C is not square; the
contribution of the 2p = 2 extra rows is dealt with by partitioning CT = [L−T | N],
so that CTC = L−TL−1 + NNT where NNT = [0 | I2]TM[0 | I2], with

M =

(
1 −2 cosω

−2 cosω 1 + 4 cos2ω

)
.

Straightforward algebra shows that

(CTC)−1 = L{I−K(M−1 + KTK)−1KT }LT

= LLT + S (10)

where K = L[0 | I2]T and (M−1 + KTK)−1 is only a 2 × 2 matrix, whose row
sums are O(N−1).

The matrices ∂C/∂c(j) are [IN−2,0,0], [0, IN−2,0], and [0,0, IN−2], for j =
1, 2 and 3, so that ∂C/∂c(j) L is of the same form with L replacing IN−2 in each
case. A1 in the expression below (9) can be seen to be the squared length of the
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vector (ρ/2)ξ∗1∂C/∂c(j) L; writing sin(jω) = (eijω − e−ijω)/2i we can write these
vectors as sums of products of complex exponentials, say v1 v2 and v3, in which
the k’th element of v1 will be the same as the (k + 1)st element of v2 and the
(k + 2)nd element of v3, namely

v1(k) =
ρ

4i sinω

n−3∑
j=k−1

e−ijω
(
ei(j−k+2)ω − e−i(j−k+2)ω

)
=

ρ

4i sinω

N−3∑
j=k−1

e−(k−2)ω − e−(k−2)ωe−ij(2ω)

=
ρ(N − k − 2)e−(k−2)ω

4i sinω
+ o(N).

Observe that the leading term is independent of j, but depends on the position
k of the element in the vector. Forming the inner product, for example v1v

∗
2 using

the fact that v2(1) = 0 we obtain

v1v
∗
2 =

ρ2

4

N−2∑
k=2

(N − k − 2)

2i sin2ω
e−i(k−2)ω × (N − k − 3)

−2i
ei(k−3)ω

=
ρ2

4

e−iω

4 sin2ω

N−2∑
k=2

(N − k − 2)(N − k − 3)

=
ρ2N3e−iω

48 sin2ω
+O(N2).

Following the same algebra through with the second term of (10) shows that
ξ∗1Sξ1 = o(N3) and hence can be ignored as required.

Repeating the above argument using the third term of (9), we see that A2 ia
the squared length of the vector (ρ/2)ξ∗2∂C/∂c(j) L; each element of this vector
can be shown to be o(N) by algebra parallel to that used in evaluating v1(k), so
that the contributions to (9) involving W2 can be shown to be o(N3) and hence
to be asymptotically negligible in this context.

Combining the inner product involving ξ1 with that involving η1 leads to

E(B12) =
N3

12 sin2ω

(
ρ2

2
cosω

)
+O(N2).

The evaluation of the remaining terms of B follows exactly the same lines and is
omitted.

Acknowledgement
This paper was prepared while the first author was visiting the Statistics Research
Section of the Australian National University.



13

REFERENCES
Bloomfield, P. (1976) The Spectral Analysis of Time Series: An Introduction. Wi-

ley, New York.
Chan, Y.T., Lavoie, J.M.M. and Plant, J.B. (1981) A parameter estimation ap-

proach to estimation of frequencies of sinusoids. IEEE Trans. Acoust., Speech
and Sig. Proc. ASSP-29, 214–219.

Dwyer, P.S and MacPhail, M.S. (1948) Symbolic matrix derivatives. AMS 19,
517–534.

Feller, W. (1971) An Introduction to Probability Theory and its Applications.
Vol.2. Wiley, New York.

Golub, G.H. and van Loan, C.F. (1983) Matrix Computations 1st Ed. Johns Hop-
kins, Baltimore.

Hannan, E.J. (1971) Non-linear time series regression. J. Appl. Prob. 8, 767–780.
Hannan, E.J. (1973) The estimation of frequency. J. Appl. Prob. 10, 510–519.
Kahn, M., Mackisack, M.S., Osborne, M.R. and Smyth, G.K. (1991) On the con-

sistency of Prony’s method and related algorithms. J. Comp. Graph. Statist.
In press.

Mackisack, M.S. and Poskitt, D.S. (1989) Autoregressive frequency estimation.
Biometrika 76, 565–576

Mackisack, M.S. and Poskitt, D.S. (1990) Some Properties of autoregressive esti-
mates for processes with mixed spectra. J. Time Series Anal. 11, 325–337.

Marple, S.L. (1987) Digital Spectral Analysis with Applications Prentice Hall,
Englewood Cliffs N.J.

Odeh, R.E and Evans, J.O. (1974) Algorithm AS70: The percentage points of the
Normal distribution. Appl. Statist. 23, 96–97

Osborne, M.R and Smyth, G.K. (1991) A modified Prony algorithm for fitting
functions defined by difference equations. SIAM J. Sci. Statist. Comp. 12,
362–382

Osborne, M.R and Smyth, G.K. (1993) A modified Prony algorithm for fitting
sums of exponential functions. Submitted.

Priestley, M.B. (1981) Spectral Analysis and Time Series vol.1 Academic Press,
London.

Quinn, B.J. (1986) Testing for the presence of sinusoidal components. Contribution
to Essays in Time Series and Allied Processes: Papers in honour of E.J. Han-
nan J. Gani and M.B. Priestley (editors), Applied Probability Trust, Sheffield
p.201–210

Rice, J.A. and Rosenblatt, M. (1988) On frequency estimation. Biometrika 75,
477–484

Richards, F.S.G. (1961) A method of maximum likelihood estimation. J. Roy.
Statist. Soc. Ser. B 23, 469–475

Sakai, H (1984) Statistical analysis of Pisarenko’s method for sinusoidal frequency
estimation.IEEE Trans. Acoust., Speech and Sig. Proc. ASSP-32, 95–101

Walker, A.M. (1971) On the estimation of a harmonic component in a time series
with stationary independent residuals. Biometrika, 58, 21–36.


