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Abstract

The Tweedie family of distributions is a family of exponential dispersion
models with power variance functions V (µ) = µp for p 6∈ (0, 1). These distri-
butions do not generally have density functions that can be written in closed
form. However, they have simple moment generating functions, so the densities
can be evaluated numerically by Fourier inversion of the characteristic func-
tions. This paper develops numerical methods to make this inversion fast and
accurate. Acceleration techniques are used to handle oscillating integrands. A
range of analytic results are used to ensure convergent computations and to
reduce the complexity of the parameter space. The Fourier inversion method is
compared to a series evaluation method and the two methods are found to be
complementary in that they perform well in different regions of the parameter
space.

Keywords: compound Poisson distribution; generalized linear models; nu-
merical integration; numerical acceleration; power variance function

1 Introduction

It is well known that the density function of a statistical distribution can be represented

as an integral in terms of the characteristic function for that distribution (Abramowitz

and Stegun, 1965, 26.1.10). This relationship is a special case of the Fourier inversion
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theorem. There are many distributions for which the moment generating function has

a analytic expression while the density function does not. In such cases it is natural to

try evaluate the Fourier inversion numerically in order to compute the density function

or cumulative probablity function. Although natural and obvious, this approach has

been relatively little used in practice because it is difficult to implement with reliable

numerical accuracy, involving as it does an infinite integral of a rapidly oscillating

integrand. This article demonstrates that the approach can be brought to a successful

conclusion by combining advanced integration methods with some analytic analysis of

the integrand. The approach is used to evaluate the densities of an important class of

distributions generated by exponential families.

An exponential dispersion model (edm) is a two-parameter family of distributions

consisting of a linear exponential family with an additional dispersion parameter.

edms are important in statistics because they are the response distributions for gener-

alized linear models (McCullagh and Nelder, 1989). edms were established as a field

of study in their own right by Jørgensen (1987, 1997), who undertook a detailed study

of their properties.

An edm is characterized by its variance function V (), which describes the mean–

variance relationship of the distribution when the dispersion is held constant. If Y

follows an edm distribution with mean µ and variance function V () then

var(Y ) = φV (µ)

where φ is the disperion parameter. Of special interest are edms with power mean–

variance relationships, V (µ) = µp for some p. Following Jørgensen (1987, 1997),

we call these Tweedie models. The class of Tweedie models includes most of the

important distributions commonly associated with generalized linear models including

the normal (p = 0), Poisson (p = 1), gamma (p = 2) and the inverse Gaussian (p = 3)

distributions. Although the other Tweedie model distributions are less well known,

Tweedie models exist for all values of p outside the interval (0, 1).

All Tweedie distributions with p ≥ 1 have non-negative support and strictly posi-

tive means, µ > 0. The Tweedie models for p > 2 are generated by stable distributions

and are continuous with strictly positive support. The Tweedie model distributions

for 1 < p < 2 can be represented as Poisson mixtures of gamma distributions. They

are mixed distributions with mass at zero but are otherwise continous on the positive
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reals. The distributions with p < 0 are unusual in that they have positive means but

support on the whole real line. These distributions seem to have limited practical

application so we do not consider them further in this article.

Tweedie models are natural candidates for modelling continuous positive quantity

data with an arbitrary measurement scale because they are the only edms which are

closed under re-scaling. The distributions with 1 < p < 2 are especially appealing for

modelling quantity data when exact zeros are possible. Dunn and Smyth (2005) gave

a survey of published applications showing that Tweedie distributions have been used

in a diverse range of fields including actuarial studies, assay analysis, survival analysis,

time studies, expense studies, consumption studies, ecology and meteorology. Recent

applications include fisheries (Candy, 2004) and rainfall prediction (Dunn, 2004). In

these and many other applications in which physical quantities are measured, the

occurrence of continuous data with exact zeros is common. In such contexts, Tweedie

models often are useful candidate distributions and would be more frequently used

in practice if high quality numerical computations were readily available. Dunn and

Smyth (2005) also give two detailed data analyses, one for 1 < p < 2 and another

for p > 2, demonstrating the usefulness of the distributions and methodology on real

data.

Apart from the well-known distributions with p = 0, 1, 2, or 3, none of the Tweedie

models have density functions with explicit analytic forms. This complicates the use

of these distributions in statistical modelling. In particular, it prevents their use with

likelihood based estimation, testing or diagnostic procedures. On the other hand,

Tweedie models do have simple, analytic moment generating functions. The purpose

of this article is to provide fast, accurate computation of the Tweedie densities by

Fourier inversion of the characteristic functions. Our aim is to develop algorithms

which will compute the Tweedie density functions to a relative accuracy of 10−10 in

64-bit double precision arithmetic for all parameter values.

All previous attempts to evaluate the Tweedie densities have used infinite series

expansions for the densities (Jørgensen and Paes de Souza, 1994; Jørgensen, 1997,

Section 4.2; Gilchrist, 2000; Dunn and Smyth, 2005). The series expansion actually

arises itself from Fourier inversion of the characteristic function, after applying a Taylor

series expansion to the main exponential term in the integrand (Feller, 1971, page 582).
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Dunn and Smyth (2005) presented the first rigorous study of the accuracy of the series

expansion and showed that it is not a practical numerical strategy for all parameter

values. For 1 < p < 2, the number of terms necessary for accurate evaluation becomes

arbitrarily large for p near 2, y large or φ small. For p > 2, subtractive cancellation in

floating point arithmetic prevents accurate summation of the series for p close to 2, y

small or φ small,

Our approach in this article is to treat the inversion of the characteristic function

directly as a numerical integration problem. A number of probability identities are

derived which make it necessary only to evaluate the density at the mean, y = µ, and

in fact only at y = µ = 1. Amongst other advantages, this ensures that the value of

the integral is never very small and increases the accuracy of the integration.

The characteristic function produces highly oscillatory infinite integrals; the top

panel of Figure 1 shows an example. Specialised extrapolation methods are used to

evaluate the oscillating integral using an economical number of terms (Sidi, 1982b).

These advanced integration methods turn out to be crucial for numerical accuracy as

well as economy. As far as we know, ours is the first application of such methods to

compute probability functions. As part of this procedure, strategies are developed for

locating the zeros of the integrand.

We find that the numerical inversion strategy evaluates the density functions to the

desired 10−10 accuracy over a very wide range of parameter values, and is also compu-

tationally modest. The inversion approach turns out to be somewhat complementary

to the series approach as it performs best for y large when p < 2 and for small y for

p > 2, whereas the series approach is the opposite. In this way the inversion method

“plugs the holes” left by the series method. Together, the two strategies enable the

Tweedie densities to be accurately evaluated for any region of the parameter space.

In the next section, the properties of Tweedie densities are outlined. The use of

Fourier inversion to evaluate the densities is discussed in Section 3, followed by a

discussion on numerical integration and acceleration methods in Section 4. Section 5

derives strategies for finding the zeros of the oscillating integrand. Implementation

details are given in Section 6. Sections 7 and 8 evaluate the accuracy and computa-

tional complexity of the algorithms, comparing comparing two alternative acceleration

schemes and comparing the series and Fourier inversion methods. Conclusions and dis-
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cussion follow in Section 9.

2 The Tweedie densities

2.1 Exponential dispersion models

edms have probability density functions or probability mass functions of the form

f(y; µ, φ) = a(y, φ) exp

[

1

φ
{yθ − κ(θ)}

]

(1)

for suitable known functions κ() and a() (Jørgensen, 1997). The canonical parameter

θ belongs to the open interval satisfying κ(θ) < ∞ and the dispersion parameter φ is

positive. The function κ() is called the cumulant function of the edm because, if φ = 1,

the derivatives of κ give the successive cumulants of the distribution. In particular,

the mean of the distribution is µ = κ′(θ) and the variance is φκ′′(θ). The mapping

from θ to µ is invertible, so we may write κ′′(θ) = V (µ) for a suitable function V (),

called the variance function of the edm.

edms have a simple form for the moment generating function, a fact which we ex-

ploit in this paper. The moment generation function is M(t) =
∫

exp(ty)f(y; µ, φ) dy.

Substituting (1) into M(t) and completing the integral shows that the cumulant gen-

erating function is

K(t) = log M(t) = [κ(θ + tφ) − κ(θ)]/φ. (2)

There is another form of the probability function which more convenient than

(1) for some purposes. Differentiating log f shows that f(y; µ, φ) is maximized with

respect to µ at µ = y. This calculation assumes that the support for y is contained

in the domain of µ, which is true for the edms considered in this article. Write

t(y, µ) = yθ − κ(θ). Then the unit deviance, d(y, µ) = 2{t(y, y) − t(y, µ)}, can be

viewed as a distance measure, satisfying d(y, y) = 0 and d(y, µ) > 0 for y 6= µ. For

example, unit deviance of the normal distribution is d(y, µ) = (y−µ)2. The probability

function can be re-written in terms of the deviance as

f(y; µ, φ) = b(y, φ) exp

{

− 1

2φ
d(y, µ)

}

(3)

where b(y, φ) = f(y; y, φ). Following Jørgensen (1997), we call this the dispersion

model form of the probabilty function.
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2.2 Tweedie models

In this article we are interested in edms with variance functions of the form V (µ) = µp

for some p ≥ 1. The cumulant function κ() can be found for Tweedie edms by equating

κ′′(θ) = dµ/dθ = µp and solving for κ. Without loss of generality we can choose

κ(θ) = 0 and µ = 1 at θ = 0. This gives

θ =











µ1−p − 1

1 − p
p 6= 1

log µ p = 1
(4)

with inverse

µ = τ(θ) = {θ(1 − p) + 1}1/(1−p)

for p 6= 1, and

κ(θ) =











µ2−p − 1

2 − p
p 6= 2

log µ p = 2.
(5)

Note that our definitions for θ and κ(θ) are continuous in p as well as in θ.

The above expression for κ(θ) implies that the cumulant generating function (2)

has a simple analytic form, but it remains that neither a() in (1) nor b() in (3) have

closed form expressions. Finding numerical approximations for these functions is the

aim of this article. The only exceptions where a() and b() can be obtained analytically

are the well known distributions at p = 1, p = 2 and p = 3 and at y = 0 for 1 < p < 2.

For 1 < p < 2 there is mass at zero equal to f(0; µ, φ) = exp[−µ2−p/{φ(2 − p)}].

2.3 A re-scaling identity

A fundamental property of Tweedie model densities is that they are closed under

re-scaling. Consider the transformation Z = cY for some c > 0 where Y follows a

Tweedie model distribution with mean µ and variance function V (µ) = µp. Finding

the cumulant generating function for Z reveals that it follows a Tweedie distribution

with the same p, with mean cµ and dispersion c2−pφ. Meanwhile, the Jacobian of

the transformation is 1/c for all y > 0. Putting these two facts together gives the

extremely useful rescaling identity

f(y; µ, φ) = cf(cy; cµ, c2−pφ) (6)

for all p, y > 0 and c > 0. As far as we know, this is the first statement of this

identity in the edm literature. This identity will allow us to select y and parameter
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values which are favourable for numerical evaluation, and to obtain the density at

other values by rescaling.

3 Fourier inversion

3.1 Overall strategy

The Fourier inversion theorem (Abramowitz and Stegun, 1965, 26.1.10) allows a con-

tinuous edm probability function to be written in terms of its cumulant generating

function as

f(y; µ, φ) =
1

2π

∫

∞

−∞

exp{K(it) − ity} dt (7)

where i =
√
−1. Our strategy is to evaluate f(y; µ, φ) by numerical evaluation of

the integral. However the use of Tweedie density properties allows us to simplify the

problem considerably before we resort to numerical integration.

It turns out that the integral (7) doesn’t need to be evaluated for every possible

combination of y, µ and φ. For example, it would be sufficient to evaluate a(y, φ) =

f(y; 1, φ) by numerical integration, after which f(y; µ, φ) could be evaluated for any

µ from (1). Hence we only need µ = 1. Alternatively, it would be sufficient to

evaluate b(y, φ) = f(y; y, φ) by numerical integration, after which f(y; µ, φ) could be

evaluated from (3). Hence we only need µ = y. The choice of µ = 1, corresponding

to θ = κ(θ) = 0, is convenient because it simplifies the integrand.

There are several methods by which f(y; µ, φ) can be evaluated for any y, µ, φ and

p while inverting the cumulant generating function only at µ = 1. Here we list three

methods in increasing order of sophistication. The second and third methods use the

rescaling identity (6). The third method uses the dispersion model form of the density

as well:

Method 1: Evaluate a. Compute a(y, φ) = f(y; 1, φ) by Fourier inversion and

substitute into (1).

Method 2: Rescale µ to 1. Compute I = a(y/µ, φ/µ2−p) = f(y/µ; 1, φ/µ2−p) by

Fourier inversion and use f(y; µ, φ) = I/µ. This method uses (6) with c = 1/µ.

Method 3: Rescale y to 1 and evaluate b. Compute I = a(1, φ/y2−p) = f(1; 1, φ/y2−p)

by Fourier inversion, use b(y, φ) = I/y, and substitute into (3). This method

uses (6) with c = 1/y.
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Section 7 compares the three methods in terms of computational load and numerical

accuracy, showing that, although all three methods are equivalent in exact arithmetic,

they are substantially different in terms of floating point errors. Only Method 3 fulfils

our aim of ten significant figure accuracy. For the moment we note that Method 3

has theoretical advantages. For one, it is the simplest from a programming point of

view, because it requires Fourier inversion only at y = µ = 1 rather than for general

y. The crucial motivation however for Method 3 is that the integral I evaluated by

Fourier inversion is almost always larger under Method 3 than the other two methods.

Under Method 3, numerical integration is always used to evaluate a density at its

mean value, i.e., at y = µ, which is close to the mode of the distribution. This should

be an advantage because numerical integration is an additive process, involving a

summation error which is roughly constant. It should follow that the larger the value

of the integral being evaluated, the smaller the relative error.

The remainder of this section and the following two sections of this article develop

methodology for evaluating a(y; φ) by Fourier inversion for any p, y and φ. This

enables any of Methods 1–3 above to be used to obtain f(y; µ, φ).

3.2 The case p > 2

When µ = 1 the inversion formula (7) simplifies to

a(y, φ) =
1

2π

∫

∞

−∞

exp k(t) dt, (8)

where k(t) = κ(itφ)/φ − ity. Extracting the real and imaginary components of the

integrand and changing the limits of integration gives

a(y, φ) =
1

π

∫

∞

0
expℜk(t) cosℑk(t) dt. (9)

Expressions for ℜk(t) and ℑk(t) are derived in the Appendix. The integrand is, for

large t, an exponentially damped cosine oscillating about zero.

3.3 The conditional density for 1 < p < 2

The Tweedie models with 1 < p < 2 are mixed distributions with mass at y = 0, and

this prevents (7), which is for continuous densities, from being used directly. Fourier

inversion is instead used to evaluate the density of the conditional distribution of Y
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given Y > 0. Write π0 = Pr(Y = 0 |µ = 1) = exp [−1/{φ(2 − p)}]. The moment

generating function of the conditional distribution at µ = 1 is related to that of the

full distribution by

M∗(t) =
M(t) − π0

1 − π0
.

The inversion formula for the conditional distribution at µ = 1 is therefore

a∗(y, φ) =
1

2π

∫

∞

−∞

M∗(it) exp(−ity) dt

=
1

2π(1 − π0)

∫

∞

−∞

{exp k(t) − π0 exp(−ity)} dt. (10)

Extracting the real and imaginary components and changing the limits of integration

gives

a∗(y, φ) =
1

π(1 − π0)

∫

∞

0
{expℜk(t) cosℑk(t) − π0 cos(ty)} dt. (11)

Expressions for ℜk(t) and ℑk(t) are derived in the Appendix. The non-conditional

density is recovered for y > 0 by

a(y, φ) = a∗(y, φ)(1 − π0).

4 Integrating oscillating functions

4.1 The modified W -transformation

The integrands in (9) and (11) are highly oscillatory, and special purpose methods

are needed if numerical integration is to be successful. A popular strategy is to find

the zeros of the integrand, integrate between successive zeros, and sum the resulting

series. Nolan (1997) and Lambert and Lindsey (1999) adopt this approach in related

work on stable distributions. The difficulty with this straightforward approach is that

the series may converge very slowly. An arbitrarily large number of terms may be

necessary, in which case rounding error can overtake precision and accuracy is lost;

see the top panel of Figure 1.

—INSERT FIGURE 1 ABOUT HERE—

An improved strategy, which can decrease computation and overcoming subtractive

cancellation, is to use an acceleration method which extrapolates the series based on

a limited number of terms (Rabinowitz 1992; Evans 1993; Krommer and Überhuber
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1998). Although a number of extrapolation methods are available, little use has been

made of them so far for evaluating probability density functions, perhaps because the

best known methods are not particularly well suited to summing terms of alternating

sign.

Sidi (1980, 1997) proposed extrapolation algorithms for oscillatory integrand based

on the exact zeros of the integrand. Further, Sidi (1982b, 1988) proposed the use of

the asymptotic zeros of the integrand rather than the exact zeros. Sidi (2003, Chapter

11) develops these ideas further. We adopt the modified W -transformation method of

Sidi (1988), which has the advantage of remaining effective while keeping the need for

asymptotic analysis to a minimum. We describe it briefly here.

Consider an infinite integral

I =
∫

∞

0
f(t) dt

where f() is an oscillating function, and define

F (x) =
∫ x

0
f(t) dt.

For any integer r ≥ 0, let x0, . . . , xr+2 be a set of successive zeros of the integrand.

Write

w(xj) =
∫ xj+1

xj

f(t) dt,

for the integrals between the zeros. The modified W -transformation of Sidi (1988) is

defined by the system of r + 2 linear equations

Wr = F (xj) + w(xj)
r
∑

i=0

vi

xi
j

0 ≤ j ≤ r + 1 (12)

where Wr and the vi are unknown constants. The solution for Wr is the approximation

to I. Sidi (1982) developed an efficient algorithm, called the W -algorithm, for solving

the system of equations using a small number of arithmetic operations and minimal

storage space.

4.2 Convergence criterion

Subject to rounding error, Wr becomes an increasingly accurate approximation to I

as r increases. Convergence is detected by comparing the most recent estimate of the

integral with the previous two estimates. The estimate of the relative error is

RelErrr =
|Wr − Wr−1| + |Wr − Wr−2|

Wr
,
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similar to that used by Piessens et al. (1983). When RelErrr < 10−10, the algorithm

stops and reports Wr as the best estimate of the integral.

This convergence criterion requires least r = 2 before an estimate of the rela-

tive error can be established. This means that five zeros and five finite integrals are

evaluated before convergence is tested. For the continuous densities p > 2, the W -

transformation is invoked starting from x0 as the first positive zero of the integral in

(9). For the mixed densities 1 < p < 2, the integrand in (11) often remains irregular

in shape for the first few zeros, so the W -transformation scheme is invoked from the

fourth zero instead of the first. This means a minimum of eight regions of integration

are used before convergence is tested in this case.

5 Analytic root finding

5.1 Exact vs asymptotic zeros

In this section, methods are developed for finding the zeros of the integrals in (9) and

(11) for use in Sidi’s W -transformation (12). First we consider why exact zeros are

necessary.

The zeros of the integrands occur at the zeros of cosℑk(t). The Appendix shows

that ℑk(t) → ty as t → ∞, so for large t the zeros of the integrals are approximately

equal to the zeros of cos(ty). The zeros of cos(ty) are simply zj = π/2 + jπ/y for

j = 0, 1, . . .. There is no theoretical reason why Sidi’s method (12) could not be

implemented using the asymptotic zeros zj instead of the exact zeros xj . This would

avoid the need to find the exact zeros.

In Section 7, we show that the exact zeros give better accuracy. The accuracy

obtainable using the asymptotic zeros declines to unacceptable levels for small y when

p > 0, making it necessary to determine the exact zeros.

5.2 p > 2

Consider now how to locate the zeros of the oscillating integrand in (9). Our strategy

is to use Newton’s method to find each zero, carefully choosing the starting value in

each case so that convergence of the iteration to the desired solution is guaranteed.

The zeros occur at

ℑk(t) =
π

2
+ mπ (13)
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for integer values of m. From (17) in the Appendix, see that ℑk′′(t) < 0 for all t,

so ℑk(t) is a convex function. In addition, k(0) = 0 and ℑk′(0) = 1 − y so ℑk(t)

starts at the origin and initially tends upwards if y < 1 or downwards if y > 1. Also,

ℑk′(t) → −y as t → ∞ so ℑk(t) is asymptotically linear decreasing.

Since ℑk(t) is convex, it has only one local maximum on [0,∞). Let kmax be this

maximum value and let tmax be the corresponding value of t. If y ≥ 1, kmax is achieved

at tmax = 0 and all the zeros occur as ℑk(t) decreases, i.e., at m = −1, −2, . . . . If

y < 1, there are two possible scenarios. Either kmax < π/2, in which case the zeros

occur at m = −1, −2, . . . as for y ≥ 1, or kmax ≥ π/2, in which case one for more

zeros will occur with m ≥ 0. Let mmax be the largest value of m satisfying (13). If

kmax ≥ π/2, then the zeros occur successively at m = 0, . . . mmax as ℑk(t) increases

followed by m = mmax, mmax − 1, . . . as ℑk(t) decreases.

Finding the zeros when y ≥ 1. In this case ℑk(t) is monotonic decreasing on

t ≥ 0. The convexity of ℑk(t) ensures that Newton’s method is globally convergent for

any solution of (13) from any non-negative starting value. If the starting value is to the

right of the solution, then Newton’s method converges monotonically to the solution.

If not, the iteration takes one step to the right and then converges monotonically.

The slope ℑk′(t) varies from 1 − y to −y, so the first zero is bracketed between

t = π/(2y) and t = π/{2(y − 1)}. We start the Newton iteration from t = π/(2y) to

find the first zero and from the previous zero for subsequent zeros. In each case the

first Newton step will be smaller than the distance between the two previous zeros

and thereafter convergence will be monotonic.

Finding the zeros when y < 1. The key here is to find kmax and tmax. If kmax <

π/2 then we revert to the method for y ≥ 1 but with starting value t = tmax +π/(2y).

So consider the case with kmax ≥ π/2 and mmax ≥ 0.

A lower bound for the first zero is t = π/{2(1 − y)} and Newton’s method will

converge monotonically to it from this starting value. Other zeros on the upswing of

ℑk(t), i.e., zeros with m = 1 to mmax, can be found by starting Newton’s method from

the previous zero. The iteration converges monotonically in each case.

A problem is to find a good starting value for the first zero on the down-swing.

One method is to treat ℑk(t) as roughly symmetric about its peak and start Newton’s

method the same distance to the right of the peak as the previous zero was to the left.
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Convexity of ℑk(t) ensures eventual convergence of the iteration. Subsequent zeros

on the down-swing are found by starting Newton’s method from the previous zero as

was done for y ≥ 1.

Finding kmax when y < 1. Some care is required in solving ℑk′(t) = 0 because

ℑk′(t) is not everywhere convex. Note that ℑk(3)(t) = 0 only once in [0,∞) at

tinfl =
1

φ(1 − p)
tan

{

π

2

(

1 − p

2p − 1

)}

. (14)

This is the point of inflection where ℑk′(t) changes from convex to concave. This

value can be used to start Newton’s method to solve ℑk′(t) = 0. The iteration either

descends the concave part of the function to the solution or ascends the convex part

to the solution, with monotonic convergence in either case.

When y is small, tmax tends to be much larger than tinfl. For example at p = 2.3,

µ = 1, φ = 1 and y = 0.001, tmax = 1589 while tinfl = 2.5. So an alternative starting

point is useful when tmax may be large. For large t, cos ζ ≈ −[(1−p)tφ]−1. Substituting

this into (16) and solving ℑk′(t) = 0 gives the approximation

t̂max = − 1

φ(1 − p)

{

1

y
cos

(

− π

2(1 − p)

)}p−1

. (15)

For the example parameter values above, t̂max = 1588, an excellent approximation.

It is easy to locate tinfl and t̂max relative to tmax by examining ℑk′(t) at the two

values. Our strategy is simply to start the Newton iteration for tmax from whichever

of tinfl or t̂max is closer to it, unless they are on opposite sides of tmax in which case tinfl

is used. This improves the starting value without altering the monotonic convergence.

5.3 1 < p < 2

Consider now the problem of locating the zeros of the integrand in (11). Since cosℑk(t)

approaches cos(ty) as t → ∞, the zeros of the integrand are asympotically those of

cos(ty), that is, the zeros will eventually occur arbitrarily close to (π + 2mπ)/(2y) for

integer m.

It proves difficult to set up monotonically convergent Newton iterations when 1 <

p < 2 as we did for p > 2. Instead we find an interval of values for t known to bracket

each successive zero, then use a modified version of Newton’s method with bound

checking to locate the zero within that interval. The modified algorithm follows an
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idea described by Press et al (1996, §9.4). Newton’s method is used while the iterations

remain within the a priori bounds. If the iteration attempts to leave the bracketing

interval, then the algorithm switches to the bisection method to refine the location of

the zero until Newton’s method can be used again.

The bracketing interval is found for each zero by stepping out from the previous

zero an interval proportional to the previous inter-zero distance, then checking that

the integrand changes sign between the end points. Since the zeros are known to

become equi-spaced for t large, this procedure causes no problems in practice.

6 Quadrature

The finite integrals F (xj) and w(xj) required as input to the Sidi extrapolation algo-

rithm (12) are computed using 512-point Gaussian quadrature. The Gaussian abscissa

and weights were generated using the algorithm given by Davis and Rabinowitz (1975,

Appendix 2).

The initial region of integration for the case 1 < p < 2 can be quite irregular; con-

sequently the region between t = 0 and the first zero is actually divided into 20 panels,

and the area in each panel evaluated using the 512-point Gaussian integrator.

In the case p > 2 especially, the integrand is asymptotically a damped cosine,

suggesting the use of Gaussian quadrature with cosine weights rather than normal

weights, also called Gauss–cos integration (Evans, 1993). Our experiments showed

that the Gauss–cos rule did not always evaluate the finite integrals to full machine

precision because the integrand often doesn’t closely resemble a cosine shape for the

initial integration regions (bottom panel of Figure 1). There was no reliable method of

determining when the Gauss–cos integrator would be satisfactory, and so the normal

Gaussian integration rule is used throughout. This is still fast and accurate, as well

as more reliable.

7 Accuracy and computational complexity

The accuracy of the Fourier inversion evaluation algorithms can be examined in two

cases for which exact densities are available. The special cases are p = 3, which is

the inverse Gaussian distribution (Johnson and Kotz, 1970, §15.3), and p = 1.5 which
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intersects with the non-central χ2 distribution on zero degrees of freedom studied by

Seigel (1979, 1985). The χ2
0 distributions are Tweedie distributions with p = 1.5 and

φ = 4/
√

µ. The χ2
0 densities can be expressed in terms of the modified Bessel function

of the first kind of order 1, implemented in the R function bessel.

First we compare the three rescaling strategies described in Section 3.1 for eval-

uating densities via µ = 1. In Figure 2, the relative errors of the three methods are

shown for computing the density with p = 3, µ = 1.4 and φ = 0.74. Method 3 enjoys

a substantial advantage in relative accuracy for values of y much larger or smaller

than µ. There are only small intervals of y values where the relative accuracy of the

other two methods are comparable. This confirms the theoretical argument posited in

Section 3.1 in favour of Method 3. From this point we adopt Method 3 as our prefered

rescaling method, and all the results which follow are for Method 3.

— INSERT FIGURE 2 ABOUT HERE —

Method 3 uses Fourier inversion to compute f(1; 1, ξ) with ξ = φ/y2−p. For any

p the performance of the method depends only on ξ. Larger values of ξ generally

correspond to integrands with slower decay and the faster oscillations. This suggests

that accuracy may deteriorate for φ large, for y large for p > 2, or for y small for

1 < p < 2. This is qualitative pattern that we expect. In practice, the use of Sidi

extrapolation improves the accuracy of the inversion enormously and causes the simple

qualitative pattern in terms of ξ to be less apparent.

Table 1 compares the accuracy of Sidi’s extrapolation method with exact and

asymptotic zeros for evaluating inverse Gaussian densities. Exact zeros give better

relative accuracy than asymptotic zeros except for very large y values. Accuracy

using asymptotic zeros is poor for small y. Accuracy using exact zeros declines slowly

as ξ increases, but remains acceptable even for quite large values. Curiously, accuracy

using approximate zeros actually improves as ξ increases. Table 2 shows a similar

comparison for the non-central χ2
0 distribution. Here the difference is smaller but still

in favour of exact zeros. In this case there is no noticeable deterioration with ξ.

— INSERT TABLE 1 ABOUT HERE —

— INSERT TABLE 2 ABOUT HERE —
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Tables 1 and Table 2 also give the number of regions of integration required to

achieve the convergence criterion and nominal accuracy. In both cases using the exact

zeros converges more quickly, although the difference is not great. The number of

integration regions required using exact zeros is explored more widely in Table 3 for

p > 2, and in Table 4 for 1 < p < 2. The number of regions required is usually less

than 20, resulting in a fast computation. For some parameter values the upper limit

of 101 regions is reached. These are cases in which the accumulation of floating point

errors prevents the nominal accuracy from being achieved.

— INSERT TABLE 3 ABOUT HERE —

— INSERT TABLE 4 ABOUT HERE —

For values of p other than those tested here the number of integration regions and

the value of ξ give a guide to accuracy. For large values of p the upper limit for the

number of integration regions is reached increasing quickly for large y, suggesting that

full accuracy is not being reached. The form of ξ leads us to expect that the difference

in accuracy between large and small y will become more pronounced as p increases.

This seems to be born out in Table 3 in which the counts increase with p for larger y

but decrease with p for small y. It appears that good accuracy can be maintained for

y < µ even for large values of p.

8 Comparing the series and inversion methods

In an earlier publication (Dunn and Smyth, 2005), we explored a different method

for evaluating Tweedie densities which did not involve numerical integration. That

method consists of summing an infinite series arising from a Taylor expansion of the

characteristic function. The series expansion approach is simple and explicit, but

becomes prohibitive for some parameter values because the number of terms required

to evaluate the density to a given accuracy increases without bound. The number of

terms required depends on their rate of decay. Dunn and Smyth (2005) showed that,

under exact arithmetic, the number of series expansion terms required for any desired

relative accuracy is roughly proportional to jmax = y2−p/(φ |2 − p|). For p < 2 the

terms in the series are positive so the main issue is computational complexity. For

16



p > 2 the terms alternate in sign so the number of terms equates to error as subtractive

cancellation errors accumulate. The expression for jmax shows the series method must

fail for y large for p < 2 and for small y for p > 2. The series method also fails for

p near 2. This section compares the series method with the inversion method of the

current article.

Figure 3 compares the relative accuracy of the inversion and series methods for the

inverse Gaussian distribution with µ = 1.4 and φ = 0.74. The series expansion gives

close to full double-precision accuracy for y greater than about 0.1 but deteriorates

rapidly for smaller y. For y less than about 0.1, either inversion method is preferred

over the series method. The asymptotic zero acceleration method is inferior to exact

zeros except for until about y > 20. The Fourier inversion method with exact zeros

is the most consistent in accuracy. It can be seen return about ten significant figures

accuracy over the whole range of y values.

— INSERT FIGURE 3 ABOUT HERE

Figure 4 gives a similar comparison for the non-central χ2
0 with p = 1.5, µ = 4 and

φ = 2. In this case the series method is always superior in terms of relative accuracy.

This is not unexpected as p = 1.5 is exactly halfway between the discontinuities p = 1

and p = 2 and the series is expected to perform best here. The error of the series

method may in fact be somewhat under-estimated here, because the Bessel function,

taken to be the exact density, is itself computed using a series expansion.

— INSERT FIGURE 4 ABOUT HERE

What Figure 4 does not show is the number of terms necessary for accurate eval-

uation. For the series method the number of terms required increases without bound

as p approaches 2, y → ∞ or φ → 0 and the inversion solution becomes the only

practical option. For example at p = 1.9999, φ = 0.01, µ = 1 and y = 100 the series

method requires 17,212 terms while the inversion method uses the pre-set minimum

of 8 integration regions. Note ξ = 0.009995 here. Table 5 compares the series and

inversion methods as p approaches 2 from above for µ = φ = 1. The series method

fails entirely for p less than 2.07 while the inversion method converges to the correct

gamma density value at p = 2.
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— INSERT TABLE 5 ABOUT HERE

In can be seen that the parameter domains in which the two numerical methods

perform best are to a large extend complementary. When 1 < p < 2, the inversion

method performs excellently for large y but gradually deteriorates in accuracy as y

decreases. Meanwhile, the series method performs excellently for small y but becomes

increasingly computationally expensive as y increases. Hence the inversion method

is preferred for large y and the series method for small y. For p > 2 the situation

is reversed. Here the inversion method is excellent for small y but loses accuracy as

y increases, while the series method is excellent for large y but deteriorates in both

accuracy and computational complexity as y decreases. Hence the inversion method

is prefered for small y and the series method for large y. The question is where to

draw the line between the two. A simple guideline which has proved effective is to cut

on values of ξ. Use the inversion method in preference to the series method if ξ < 1

when p > 2, since subtractive cancellation causes the series method to eventually fail

in this neighbourhood. For 1 < p < 2, where the series does not suffer subtractive

cancellation, use the inversion method in preference to the series method if ξ < 0.01.

9 Discussion and conclusions

This article describes the effective use of Fourier inversion to accurately compute the

density functions for Tweedie densities with p > 1. The method shows excellent

relative accuracy for a wide range of parameter values.

Probability identities were derived which allow the densities to be evaluated by

way of the dispersion model form of the density (3). This allows the densities to be

computed for all parameter values while using Fourier inversion only at y = µ = 1.

This strategy not only simplifies the computations but allows good relative accuracy

to be maintained even in the extreme tails of the density functions. The use of the

re-scaling identity (6) is critical for achieving our aim of ten-figure relative accuracy,

becaue it allows us to evaluate the density near its mode, where Fourier inversion has

the best relative accuracy. Other strategies are shown to be inadequate.

This article also demonstrates the use of advanced acceleration methods to eval-

uate the infinite oscillating integrals that arise in Fourier inversion. The acceleration

methods not only economize on computations but also prove crucial to achieving good
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accuracy for many parameter values. These methods could effectively be used in other

applications of Fourier inversion in statistics. Two extrapolation methods were imple-

mented. The use of exact zeros of the integrand produces better relative accuracy at

the expense of more analytical and computational effort whereas the use of asymptotic

zeros is simpler and quicker but the relative accuracy of the results suffer. Given the

results presented here, the loss of speed using the exact zero acceleration scheme is in

general more than offset by the gain in accuracy.

The algorithms presented in this paper are implemented in the tweedie software

package for R (R Development Core Team, 2005). The Fourier inversion component

is implemented in FORTRAN for speed. Double precision arithmetic was used for all

calculations. The function dtweedie.inversion implements the algorithms discussed

in this paper.

This article considers density functions. The Fourier inversion method can also

be adapted to compute the Tweedie cumulative distribution functions (Dunn, 2001).

The function ptweedie.inversion in the tweedie package implements the inversion

method for the cumulative distribution function.

The Fourier inversion method is found to complement the series expansion method

of evaluation of Dunn and Smyth (2005) in that the two methods perform best in

different regions of the parameter space. Simple guidelines are provided to choose

between the two methods. It is possible to set up an effective interpolation scheme

which blends the inversion and series methods to provide comprehensive evaluation

of Tweedie densities across the parameter space (Dunn, 2001). This work makes use

of saddlepoint approximations to aid in the blending process and will be published

separately. In the meantime it is available in the function dtweedie in the tweedie

package.
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Appendix: derivatives of k(t)

To successfully evaluate the integrals in Sections 3.2 and 3.3, we need to understand

the behaviour of k(t), in particular its real and imaginary components.

First, recall that τ(θ) = µ and note that V (µ) = µp implies τ ′(θ) = τ p(θ). The

following results are found for p 6= 2:

k(t) =
τ 2−p(itφ) − 1

φ(2 − p)
− ity;

k′(t) = iτ(itφ) − iy;

k′′(t) = −φτp(itφ);

k(3)(t) = −ipφ2τ 2p−1(itφ).

Some further notation is useful as this point. Write α = (2 − p)/(1 − p) and ζ =

tan−1{(1− p)tφ}. Note −π/2 < ζ < 0 for p > 1. Also 1+ (1− p)itφ = exp(iζ)/ cos(ζ)

and cos ζ = {1 + (1 − p)2t2φ2}−1/2 > 0. We can now re-write

τ(itφ) =
exp{iζ/(1 − p)}

(cos ζ)1/(1−p)

and hence

ℜk(t) =
1

φ(2 − p)

cos(ζα)

(cos ζ)α
− 1

φ(2 − p)
;

ℑk(t) =
1

φ(2 − p)

sin(ζα)

(cos ζ)α
− yt;

ℑk′(t) =
cos{ζ/(1 − p)}
(cos ζ)1/(1−p)

− y; (16)

ℑk′′(t) = −φ
sin{ζp/(1− p)}

(cos ζ)p/(1−p)
. (17)

We can now confirm that the infinite integrals in Sections 3.2 and 3.3 do have finite

values. Some algebra shows ℜk(t) → −∞ as t → ∞ when p > 2, so the integral in (9)
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converges. When 1 < p < 2, we find that ℜk(t) → π0 as t → ∞ and ℑk(t) → ty so

the two terms in the integrand of (11) asymptotically cancel each other out, showing

that (11) converges as well. Notice that neither of the individual integrand terms in

(11) give convergent integrals if treated alone.
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Table 1: Accuracy of Fourier inversion for evaluating inverse Gaussian densities with
p = 3, µ = 1.4 and φ = 0.74. Results are given for Sidi extrapolation with exact and
with asymptotic zeros. The table gives log10 relative error, the number of integration
regions required, and the value of ξ = φ/y2−p which indexes the degree of difficulty.

Exact zeros Asymptotic zeros

Exact Log- No. Log- No.

y Density Error Ints Error Ints ξ

0.001 1.4 × 10−289 −9.1 5 −4.5 21 0.00074
0.01 5.5 × 10−27 −9.5 6 −3.4 17 0.0074
0.05 0.00014 −11 9 −5.1 17 0.037
0.1 0.043 −10 10 −6 16 0.074
0.5 0.75 −10 13 −3.4 17 0.37
1 0.44 −10 14 −4.4 18 0.74
2 0.15 −10 15 −6.1 18 1.48
3 0.067 −9.9 16 −5.4 18 2.22
4 0.032 −9.7 16 −3.4 18 2.96
5 0.017 −9.5 16 −2.4 18 3.7
6 0.0094 −9.4 17 −2.2 18 4.44
7 0.0053 −9.4 17 −2.9 18 5.18
8 0.0031 −9.3 17 −5 18 5.92
9 0.0019 −9.3 17 −6.1 18 6.66
10 0.0011 −9.2 17 −6.8 18 7.4
15 0.00011 −9.0 17 −8.4 18 11.1
20 1.3 × 10−5 −8.9 17 −9 18 14.8
50 1.1 × 10−10 −8.6 18 −9.9 18 37
100 1.3 × 10−18 −8.5 18 −9.4 16 74
250 1.1 × 10−41 −8.2 18 −9.2 17 185
500 1.5 × 10−79 −8.1 18 −9.1 17 370
750 3.1 × 10−117 −8.0 18 −9.1 17 555
1000 7.4 × 10−155 −7.9 101 −9.1 17 740
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Table 2: Accuracy of Fourier inversion for evaluating non-central χ2
0 densities with

p = 1.5, µ = 4 and φ = 2. Results are given for Sidi extrapolation with exact and
with asymptotic zeros. The table gives the density value from the Bessel function,
the log10 relative error, the number of integration regions required, and the value of
ξ = φ/y2−p which indexes the degree of difficulty.

Exact zeros Asymptotic zeros

Bessel Log- No. Log- No.

y Form Error Ints Error Ints ξ
0.001 0.135335 −11 13 −8.4 12 63.2
0.01 0.135335 −9.9 13 −9.0 12 20
0.05 0.135321 −9.8 13 −9.6 12 8.94
0.1 0.13528 −9.8 13 −10 12 6.32
0.5 0.134039 −9.9 13 −11 12 2.83
1 0.130567 −9.9 13 −11 12 2.00
2 0.119232 −10 13 −10 12 1.41
3 0.104744 −9.9 13 −10 12 1.15
4 0.0893754 −9.9 13 −10 12 1.00
5 0.0745335 −9.9 12 −10 12 0.894
6 0.0610078 −9.9 12 −10 12 0.816
7 0.0491654 −9.9 13 −10 12 0.756
8 0.0391003 −9.8 13 −9.9 12 0.707
9 0.0307413 −9.8 13 −9.9 12 0.667
10 0.0239277 −9.8 13 −9.9 12 0.632
15 0.00608121 −9.8 13 −9.9 12 0.516
20 0.00134336 −9.7 13 −9.9 12 0.447
50 3.8 × 10−8 −9.7 14 −9.8 14 0.283
100 1.1 × 10−16 −9.7 14 −9.0 17 0.200
1000 4.5 × 10−194 −9.6 10 −9.6 15 0.0632
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Table 3: The number of integration regions required to evaluate various Tweedie
densities with p > 2. The mean µ = 1 in all cases and the exact zero acceleration
algorithm is used. Five regions of integrations is the minimum possible and 101 is the
maximum.

y
p φ 0.001 0.01 1 5 10 100 1000

2.001 10 13 13 13 13 13 13 13
2.001 1 11 11 11 11 11 11 11
2.001 0.1 10 10 10 10 10 10 10
2.001 0.01 6 6 6 6 6 6 6

2.01 10 14 14 14 14 14 14 14
2.01 1 13 13 13 13 13 13 13
2.01 0.1 9 9 10 10 10 10 10
2.01 0.01 6 6 6 6 6 6 6

2.5 10 12 15 17 17 17 18 18
2.5 1 8 10 15 16 16 17 17
2.5 0.1 5 6 10 12 12 15 16
2.5 0.01 101 5 6 8 8 10 12

3 10 7 10 17 18 18 101 101
3 1 5 7 15 17 17 18 101
3 0.1 101 5 10 13 15 17 18
3 0.01 5 5 7 9 10 15 17

5 10 5 5 17 101 101 101 101
5 1 5 5 14 101 101 101 101
5 0.1 5 5 11 17 101 101 101
5 0.01 5 5 8 15 17 101 101
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Table 4: The number of integration regions required to evaluate various Tweedie
densities with 1 < p < 2. The mean is µ = 1 in all cases and the exact zero acceleration
algorithm is used. Eight regions of integrations is the minimum possible and 101 is
the maximum.

y
p φ 0.001 0.01 1 5 10 100 1000

1.01 10 11 11 101 15 17 17 17
1.01 1 11 11 17 18 17 17 21
1.01 0.1 11 101 17 16 17 21 22
1.01 0.01 101 17 17 20 21 22 23

1.5 10 12 12 12 12 12 12 13
1.5 1 12 12 12 12 13 16 15
1.5 0.1 12 12 16 15 15 17 20
1.5 0.01 13 16 17 19 20 21 22

1.7 10 12 12 13 13 13 14 14
1.7 1 13 13 15 18 18 16 16
1.7 0.1 16 18 16 16 16 16 17
1.7 0.01 15 16 17 18 19 20 21

1.9 10 14 14 14 14 14 14 15
1.9 1 15 15 15 18 18 16 14
1.9 0.1 14 17 16 16 16 16 16
1.9 0.01 16 17 17 17 17 18 19

1.99 10 13 13 13 13 13 13 14
1.99 1 13 13 14 18 18 16 15
1.99 0.1 16 16 16 16 16 16 16
1.99 0.01 17 17 17 17 17 17 17
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Table 5: Computed densities from the inversion and series evaluation algorithms as
p → 2 from above, for µ = φ = 1. The series method failes entirely for p < 2.07
while the inversion method converges to the correct gamma density value at p = 2 of
0.3678794.

Computed density Terms required
p Inversion Series Inversion Series

2.00001 0.367880 0.000000 11 5444
2.00005 0.367881 0.000000 11 2438
2.00010 0.367882 > 100 11 1724
2.00020 0.367885 0.000000 11 1220
2.00030 0.367888 0.000000 11 998
2.00040 0.367891 0.000000 11 864
2.00050 0.367894 > 100 11 774
2.00060 0.367897 > 100 11 706
2.00070 0.367900 > 100 11 654
2.00080 0.367903 0.000000 11 612
2.00090 0.367905 > 100 11 578
2.00100 0.367908 > 100 11 548
2.00500 0.368024 > 100 12 246
2.01000 0.368169 > 100 13 176
2.05000 0.369342 > 100 14 73
2.07000 0.369935 0.370289 14 61
2.10000 0.370832 0.370832 14 52
2.15000 0.372344 0.372344 14 43
2.20000 0.373874 0.373874 14 39
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Figure 1: Two example integrands. Top: Showing the slow decay possible for the
integrand. The integrand is computed for p = 3, φ = 2 and y = 10, showing the
slowly decaying nature of the integrand. The thick solid line is the integrand; the
dashed lines are the envelope of the integrand. The shaded regions have areas of
approximately 0.064407 and −0.061380 respectively. Bottom: Showing the irregular
initial integrands sometimes possible when 1 < p < 2. The integrand is computed for
for p = 1.02, φ = 0.5 and y = 0.01.
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Figure 2: Relative errors of the three Fourier inversion re-scaling strategies mentioned
in Section 3.1 to compute densities with p = 3, µ = 1.4 and φ = 0.74. Method 3, which
transforms all densities to y = µ = 1, gives smaller relative errors. All computations
are performed using Sidi extrapolation with exact zeros.
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Figure 3: Relative errors of inversion and series methods for evaluating inverse Gaus-
sian densities with µ = 1.4 and φ = 0.74. The thick solid line is the inversion method
using Sidi extrapolation with exact zeros, the dashed line is inversion with asymp-

totic zeros, and the dotted line is the series method. The thin solid horizontal line
represents the target accuracy of 10−10.
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Figure 4: Relative errors of series and inversion methods for evaluating non-central χ2
0

densities with p = 1.5, µ = 4 and φ = 2. The thick solid line is the inversion method
using exact zeros, the dashed line is the modified method with asymptotic zeros, and
the dotted line is the series method. The thin solid horizontal line represents the
target accuracy of 10−10.
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