Empirical Bayes and Mixed Linear Models for Assessing Differential Expression in cDNA Microarray Experiments

Gordon Smyth
Walter and Eliza Hall Institute

Designs → Linear Models

\[y \log_2(R) - \log_2(G) = B - A \]

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
 y_3
\end{pmatrix} =
\begin{pmatrix}
 1 & 0 \\
 1 & -1 \\
 1 & 1
\end{pmatrix}
\begin{pmatrix}
 \beta_1 \\
 \beta_2
\end{pmatrix}
\]

\[\beta = B - A \]

\[\beta_1 = A - \text{Ref} \]

\[\beta_2 = B - A \]

\[\beta_3 = C - A \]

Linear Model Estimates

Obtain a linear model for each gene \(g \)

\[
E(y_{gj}) = X\hat{\beta}_{gj} \\
\text{var}(y_{gj}) = W^{-1}_g \sigma^2
\]

Estimate model by robust regression, least squares or generalized least squares to get

coefficients \(\hat{\beta}_{gj} \)

standard deviations \(s_g \)

standard errors \(\text{se}(\hat{\beta}_{gj})^2 = c_g s^2 \)

Parallel Inference for Genes

- 10,000-40,000 linear models
- Curse of dimensionality:
 Need to adjust for multiple testing, e.g., control family-wise error rate (FWE) or false discovery rate (FDR)
- Boon of parallelism:
 Can borrow information from one gene to another

Hierarchical Model

Normal Model

\[\hat{\beta}_o \sim N(\beta_o, \sigma^2) \]

\[P(\beta_o \neq 0) = p \]

\[\beta_o | \beta_o \neq 0 \sim N(0, c_o \sigma^2) \]

\[s^2 = \sigma^2 x^2_{d_0} \]

Reparameterization of Lönnstedt and Speed 2002

Normality, independence assumptions are wrong but convenient, resulting methods are useful
Posterior Statistics

Posterior variance estimators
\[\hat{s}_g^2 = \frac{s^2_d + s^2_0}{d + d_0} \]

Moderated t-statistics
\[\tilde{t}_{gj} = \frac{\hat{s}_g \sqrt{C_{gj}}}{\hat{s}_g^2} \]

Eliminates large t-statistics merely from very small \(s \)

Marginal Distributions

The marginal distributions of the sample variances and moderated t-statistics are mutually independent
\[s_g^2 \sim s_0^2 F_{d,d_0} \]
\[\tilde{t}_g \sim \begin{cases} t_{d_0+d} & \text{with prob } 1 - p \\ \frac{1}{\sqrt{1 + \epsilon_g / c} t_{d_0+d}} & \text{with prob } p \end{cases} \]

Degrees of freedom add!

Known result?

Estimating Prior Parameters

Marginal moments of log \(s^2 \) lead to estimators of \(s_0 \) and \(d_0 \):
Estimate \(d_0 \) by solving
\[\psi'(d_0 / 2) = \text{mean} \left\{ n_s^c - \psi'(d_s / 2) \right\} \]
where
\[\epsilon_s = \log s^c_s - \psi'(d_s / 2) + \log(d_s / 2) \]
Finally
\[s_0^2 = \exp \left\{ \tilde{t} + \psi'(d_s / 2) - \log(d_s / 2) \right\} \]

Shrinkage of Standard Deviations

The data decides whether \(\tilde{t}_g \) should be closer to \(t_{\text{pooled}} \) or to \(t_g \)

Simulations

\(\sigma^2 \) similar
\(\sigma^2 \) very different

Scorecard Controls
Posterior Odds

Posterior probability of differential expression for any gene is

\[
p(\beta \neq 0 | \beta, s^2) = p \left(\frac{c}{c + c_0} \right)^{1/2} \left(1 - \frac{c^2 + d + d_0}{c + c_0} \right)^{1/2 + d_0} \]

Monotonic function of \(t^2 \) for constant \(d \)

Reparameterization of Lönnstedt and Speed 2002

Quantile Estimation of \(c_0 \)

Let \(r \) be rank of \(|\hat{I}_g| \) in descending order, and let \(F(\cdot) \) be the distribution function of the \(t \)-distribution. Can estimate \(c_0 \) by equating empirical to theoretical quantities:

\[
2 \left| t \right| \frac{\sqrt{c + c_0}}{1 - \sqrt{c + c_0}} \left(1 - \frac{c}{c + c_0} \right) \left(1 - \frac{c^2 + d + d_0}{c + c_0} \right)^{1/2} \left(1 - \frac{c^2 + d + d_0}{c + c_0} \right)^{1/2 + d_0} = \frac{r - 0.5}{n}
\]

Get overall estimator of \(c_0 \) by averaging the individual estimators from the top \(\rho/2 \) proportion of the \(|\hat{I}_g| \)

Duplicate spots

- Replicate spots of each gene on same array, assume duplicates at regular spacing
- Assume spatial component of correlation between duplicates is same for each gene
- Estimate spatial correlation from consensus estimator across genes

Posterior F-tests

If

\[
\beta_y = 0
\]

then

\[
\frac{\beta_y^T X^T W X \beta_y}{s_y^2} \sim F_{t, d + k, n}
\]

Non-null prior on \(\beta \) doesn't enter

F-Tests as Classification Problem
Stemmed Heat Diagrams