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What’s Your Question?
What are the targets genes for my knock-out 
gene?
Gene discovery, differential expression
Is a specified group of genes all up-regulated in 
a specified condition?
Gene set differential expression
Can I use the expression profile of cancer 
patients to predict chemotherapy outcome?
Class prediction, classification
Are there tumour sub-types not previously 
identified? Do my genes group into previously 
undiscovered pathways?
Class discovery, clustering

This talk covers first question - differential expression
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Types of microarrays in this talk

Linear modelling approach in this talk 
applies to both single channel (Affymetrix) 
and two-colour arrays
Need to cover some special features of 
two-colour arrays
The examples are two-colour
Two colour with common reference is 
virtually equivalent to single channel from 
an analysis point of view

4

Linear Models

Analyse all arrays together combining 
information in optimal way
Combined estimation of precision
Extensible to arbitrarily complicated 
experiments
Design matrix: specifies RNA targets 
used on arrays
Contrast matrix: specifies which 
comparisons are of interest
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Log-Ratios or
Single Channel Intensities?

Tradition analysis, as here, treats log-ratios
M=log(R/G) as the primary data, i.e., gene 
expression measurements are relative
Alternative approach treats individual channel
intensities R and G as primary data, i.e., gene 
expression measures are absolute (Wolfinger, 
Churchill, Kerr)
Single channel approach makes new analyses 
possible but
- make stronger assumptions
- requires more complex models (mixed models in 

place of ordinary linear models) to accommodate 
correlation between R and G on same spot

- requires absolute normalization methods 6

Linear Models for Differential Expression
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Matrix Multiplication
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Slightly larger example:
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Linear Model Estimates
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Parallel Inference for Genes

10,000-40,000 linear models
Curse of dimensionality:
Need to adjust for multiple testing, e.g., 
control family-wise error rate (FWE) or 
false discovery rate (FDR)
Boon of parallelism:
Can borrow information from one gene to 
another
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Hierarchical Model

Normal Model
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Generalization of Lönnstedt and Speed 2002 

Normality, independence assumptions are wrong but 
convenient, resulting methods are useful 12

Posterior Statistics
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Posterior Odds
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Posterior probability of differential expression for 
any gene is

Generalization of Lönnstedt and Speed 2002 

Monotonic function of 2t� for constant d
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Within-Array Replicate spots

Replicate spots of each gene on same 
array, assume duplicates at regular 
spacing
Assume spatial component of correlation 
between duplicates is same for each gene
Estimate spatial correlation from 
consensus estimator across genes
Greatly improves estimation of precision
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Implications for Design

Given linear modelling approach, can 
compute efficiency of various experimental 
designs
Need to specify which RNA sources are to 
compared and which contrasts are of 
interest
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For k = 3, efficiency ratio (Design I(a) / Design II) = 3 
In general, efficiency ratio = 2k / (k-1)
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RNA Sources
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N=4

N=3

Design Choices in Time Series
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Case Study:
B Cell Lineage Commitment

21

B Cell Lineage Commitment

Pax5 is a critical 
gene for B cell 
development

Enables 
development along 
the B cell lineage 
and simultaneously 
inhibits other 
pathways

22

How Does Pax5 Work?

Design a microarray experiment to identify 
genes downstream from Pax5 in the 
molecular pathways

23

Halted Development

B cell development can be halted at the 
pro B stage by
- Absence of the Pax5 gene
- Absence of the Rag1 gene

(which activates recombination)
- Withdrawal of the regulatory cytokine IL-7

(essential growth factor)

24

RNA Sources

Compare RNA from 4 sources:
- Pax5-/- (knock-out cell line)
- Rag1-/- (knock-out cell line)
- Wt (“wild type”, i.e., normal)
- Wt cells with IL-7 removed after initial 

development commenced

Rag1-/- and IL-7 removal identify genes 
turned on or off by halted development 
rather than by Pax5
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Saturated Design

Pax5-/-Wt

IL-7 removed Rag1-/-
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Regression Analysis

Choose 3 comparisons between the 4 RNA 
sources to be the coefficients of the linear 
model, e.g.,
- PW:   Pax5-/- vs Wt
- RW:   Rag1-/- vs Wt
- IW:   IL-7 withdrawn vs Wt

For each gene, fit a linear model with a 
coefficient for each contrast

Any other comparisons of interest can be 
extracted from the linear model as contrasts
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spots is double this

28

What about Duplicate Spots?

ρ between duplicate M values on the same 
slide

ρ ≈ 0.85
Use gls procedure in R to fit linear model 
allowing for correlated spots

Gene X: M11 M12 M21        M22                M31 M32

ρ ρ ρ
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cDNA -/- +/+ -/- +/+
controls controls
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RT-PCR Confirmation of DE Genes

10/15 array positives confirmed by RT-PCR
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Agreement with PCR

Observe average rank of known DE genes 
relative to known non-DE genes
Moderated t-statistic and ordinary t-
statistic do virtually the same on this data

Both do better than fold change
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Case Study:
Transcription Factor Targets

34

Experiment with Transcription Factors

AML1
CBFb

ERG

ETS2

Adenovirus

Payload

TEL
TELAML1

EGFP

HeLa cells

Transduction

35

Experimental Design I

All arrays use reference EGFP

AML1
3 arrays

ERG
4 arrays

ETS2
5 arrays

CBFb
4 arrays

AML1.CBFb
7 arrays

AML1.CBFb.ERG
3 arrays

AML1.CBFb.ETS2
3 arrays

TEL
3 arrays

TELAML1
3 arrays

Two GAL files 36

Experimental Design II - Controls

AML1
vs EGFP

w/o serum
3 arrays

EGFP
300 viruses

vs 100 viruses
2 arrays

AML1.CBFb
vs EGFP

w/o serum
3 arrays AML1

300 viruses
vs 100 viruses

2 arrays

No Virus
vs EGFP
4 arrays

Serum Effects Virus Effects
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Comparisons of Interest

Ordinary comparisons with EGFP:
N, A, C, R, T, AC, RAC, TAC, TEL, TELAML1
Comparisons with no virus condition:
A-N, C-N, R-N, T-N, AC-N, RAC-N, TAC-N, 
TEL-N, TELAML1-N
Interaction comparisons:
AC-A, AC-C, RAC-R, RAC-AC, TAC-T, TAC-AC, 
TELAML1-TEL, TELAML1-AC
Control comparisons:
ACwos, Awos, Awos-A, ACwos-AC,
G300-G100, A300-A100

38

Linear Models

Design matrix is straightforward here 
because of use of common reference
Lots of contrasts of interest
Raises question of simultaneous inference
across the contrasts, as well as across 
genes
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Moderated F-tests
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If

Non-null prior on β doesn’t enter

0gβ =
then

Can combine several t-tests together in an F-test 
to test several hypotheses simultaneously
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Classifying Genes

Any method of classifying genes as up, 
down or neutral for each transcription 
factor individually will underestimate the 
number of genes co-regulated by two or 
more transcription factors
Classifying F-test method classifies each 
gene over any number of comparisons 
arising from a linear model
More realistic idea of co-regulation
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Bonferroni

Group 1 Group 2

Group 3 9866
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F-Tests as Classification Problem
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Composite Classification Method

F-test classification is not very powerful for 
detecting genes which respond to one 
condition (TF) only when there are many 
comparisons
Final classification method was a 
composite of classifying F and individual t
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Filtering of EGFP Responders

No virus 
response (N)

AML1 vs no virus 
contrast (A-N) 

0

1 1 Yes

Include TF vs EGFP differences only if they are not 
reproduced by the no virus vs EGFP comparison

Keep?

Yes

1 0 No

AML1 
response (A) 

1

1

1
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Stemmed Heat Diagram
Large scale experiments allow differential expression 
results to be compared across conditions:

46

Summary

Analyse data all at once
Use standard deviances not just fold 
changes
Use ensemble information to shrink 
variances
Assess differential expression for all 
comparisons together

47

Analysis Strategies

Stable background estimation

Intensity/spatial normalization
Robustness

Automatic spot quality weights
Estimate variability

Smoothing across genes
Linear modelling
Duplicate spots

Differential expression as classification

Allows high-through put analysis 48

LIMMA Package for R

Linear models for microarray data. A 
software package for the R programming 
environment. Focus is differential 
expression including
- moderated t-statistics
- methods for duplicate spots
- classifying F-tests
- stemmed heat diagrams

Available from www.bioconductor.org
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